Rasyid et al. Geoenvironmental Disasters (2016) 3:19
DOI 10.1186/s40677-016-0053-x

Geoenvironmental Disasters

METHODOLOGY Open Access

Performance of frequency ratio and logistic ® e
regression model in creating GIS based

landslides susceptibility map at

Lompobattang Mountain, Indonesia

Abdul Rachman Rasyid"*'®, Netra P. Bhandary' and Ryuichi Yatabe'

Abstract

The purposes of this study is to create a landslide susceptibility map (LSM) for Lompobattang Mountain area in
Indonesia. The foot of the Lompobattang Mountain area suffered flash flood and landslides in 2006, which led to
significant adverse impact on the nearby settlements. There were 158 identified landslides covering a total area
of 3.44 km?. Landslide inventory data were collected using google earth image interpretations. The landslide
inventories were prepared out of the past landslide events, and future landslide occurrence was predicted by
correlating landslide causal factors. In this study landslide inventories were divided into landslide data for training
and landslide data for validation. The LSM was prepared by Frequency Ratio (FR) and Logistic Regression (LR)
statistical methods. Lithology, distance from the road, distance from the river, distance from the fault, land use,
curvature, aspect, and slope degree were used as conditioning parameters. Area under the curve (AUC) of the

Receiver Operating Characteristic (ROC) was used to check the performance of the models. In the analysis, the FR
model results in 85.8 % accuracy in the AUC success rate while the LR model was found to have 86.9 % accuracy.
However, the accuracy of both these models in AUC predictive rate is the same at around 85.1 %. The LR model is

associated with the landslides in this study area.

6.34 % higher than the FR model in comparison to its accuracy for ratio of landslide validation. The landslide
susceptibility map consist of the predicted landslide area, hence it can be used to reduce the potential hazard
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Background

Earthquakes, intense rainfall, and snowmelt are general
triggering factors of landslides. Other factors can be
geology, land cover, slope geometry, solar radiation,
surface and subsurface hydrology, and human activities.
In Indonesia, landslides are serious problem that cause
debris flow or flash flood disasters every year during or
after heavy rainfalls. During 2005 to 2014, around 1926
landslide events were reported which resulted in loss of
1035 human casualties and 853 disappearance, and in

* Correspondence: rachman_rasyid@yahoo.com

'Graduate School of Science and Engineering, Ehime University, 3 Bunkyo,
Matsuyama 790-8577, Japan

“Department of Architecture Engineering Faculty, Hasanuddin University,
Makassar 90245, Indonesia

@ Springer Open

the last one decade the trend has increased (Badan
Nasional Penanggulangan Bencana Indonesia 2015). The
government and research institutes have been attempt-
ing to minimize the loss through appropriate landuse
planning and information dissemination about landslide
susceptibility.

Landslide susceptibility, hazard and risk zoning are
parts of landuse planning. As first stage of landslide
hazard mitigation, landslide susceptibility mapping must
provide important information to support decisions for
urban development, which considerably reduces poten-
tial landslide damage. In other words, landslide suscepti-
bility maps are produced to help humans to recognize
and adapt to landslide hazard mitigation procedures
(Pourghasemi et al. 2012).
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A number of researchers have put their efforts to in-
crease the accuracy of landslide susceptibility mapping
up until today. A variety of methods have been applied
to include qualitative and quantitative modeling. Westen
et al. (1997) classified the general techniques of analyz-
ing landslide zoning using GIS techniques into heuristic,
statistical and deterministic approaches. More recently,
some researchers have created landslide susceptibility
maps using statistical models, and some of them
combine those models with other approaches such as
frequency ratio (FR) and logistic regression (LR)
methods (e.g., by Lee and Pradhan 2007, Oh et al. 2008,
and Solaimani et al. 2013). FR was combined with ana-
lytical heuristic approach (AHP) by Demir et al. (2013)
and Reis et al. (2012), and combination using FR, AHP,
LR and artificial neural network (ANN) model was pro-
posed by Park et al. (2013). Integrated techniques such
as FR, weight of evidence (WoE) and deterministic
methods have been applied by Cervi et al. (2010) and
Yilmaz and Keskin (2009). Association models like WoE,
AHP and fuzzy logic to combine multiple factor layers
to create landslide susceptibility map was introduced by
Suh et al. (2011).

Statistical techniques involve large amounts of data to
obtain reliable results (Yilmaz 2009), and they are
usually suitable for wide area studies. Statistical methods
use sample data based on the relationship between land-
slides and causal factors. The combination of both data
is evaluated in an objective way. In this study we apply
two statistical methods, namely FR and LR models. The
FR model consists of simple procedure and is modest,
while the LR model needs complex procedure for pre-
paring data using a statistical software and only limited
data in processing need to be considered (Park et al.
2013 and Demir et al. 2015).

The main objective of this study is to create a landslide
susceptibility map of Lompobattang Mountain. The sus-
ceptibility map was prepared by summing the weight
parameter values from frequency ratio model and an
equation established by using logistic regression model.
Validation of the results is emphasized in this study in
order to reduce any uncertainty that may occur during
prediction and to increase the accuracy of the model. To
achieve this, the landslide inventory data were divided
into training data (data used to obtain weight of parame-
ters in FR analysis used in the equation obtained from
LR model) and the validating data which were used to
examine the level of precision. The ROC curve and
AUC were used to validate the model.

Verification is applied to get the best appropriate coef-
ficient of landslide causal factors in the LR model. To do
this, the variable of equation is established by means of
using equal number of landslide and non-landslide
pixels. For comparison, the analysis was also carried out
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by using landslide merged with 50 and 100 % of non-
landslide pixels. Next, the ratio was obtained by overlaying
landslide data for validation into the landslide suscep-
tibility map.

The spatial database of landslides and landslide causal
factors to be used in the susceptibility analysis was
prepared in the GIS environment, which has been used
as a major tool of spatial analysis in landslide studies.
Satisfactory results have been obtained in landslide sus-
ceptibility analysis (Shirzadi et al. 2012) and effective
modeling in slope instability analysis (Dai and Lee 2002).

Study area

Bawakaraeng and Lompobattang mountains are located
in Southern South Sulawesi Province and are sur-
rounded by the districts that have high economic growth
rate. Both of these mountains have important role in
supporting that growth. This area provides a fertile land
but frequently suffers from landslide disasters. Landslide
disasters occur almost every year, especially during the
rainy season, which induce flash floods and debris flows
in the upstream. On March, 26 2004, a huge landslide
occurred at Mt. Bawakaraeng with a volume of about
200 million m?, a width of about 1600 m and a length of
about 750 m. The earth materials and debris from the
landslide covered the valley along the river, causing
destruction of environment and river ecosystem. Geo-
morphologically, such topographic features and rise of
groundwater level are the main cause of the landslide
(Tsuchiya et al. 2009). On June 20, 2006 heavy rainfall
triggers landslides and flash floods at Mt. Lompobattang.
Settlements at Sinjai, Bulukumba, Bantaeng, Jeneponto
and Bone regions on the foot of Lompobattang Mountain
were heavily impacted. Nearly 214 fatalities, 45 missing,
and around 6400 displaced were reported (Direktorat
Cipta Karya Kementerian PUPERA 2006).

Lompobattang Mountain is located at 119°50°-120°04"
E and 5°12'-5°28" S with altitude about 2876 m above sea
level and has a total area coverage of 351.742 km? (Fig. 1).
There are about 93 settlements in this area with six hydro-
logic watershed system; Jeneberang, Lantebong, Kelara,
Apparang, Bijawang and Tangka. Based on geological
maps (Sukamto and Supriatna 1982), the volcanic rocks of
Lompobattang Mountain consist of agglomerates, lava,
breccia, and tufa deposition, which form a broad strato-
volcano and quarter lompobattang volcanic (qlv) were
estimated from volcanic rock Pleistocene.

The climate of Sulawesi Island is tropical with special
characteristics of two seasons within a year. The northeast
monsoon gives rise to rainy season between November
and May (December to January has maximum rainfall) and
the southwest monsoon causes the dry season from June
to October. The annual rainfall data recorded at Malino
station from year 2011 to 2014 was 3643 to 5474 mm. The
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Fig. 1 Location map of the study area showing elevation and landslide inventory at Lompobattang Mountain
.
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average annual rainfall is 4424 mm for over 25 years
(1978 to 2003). The monthly rainfall is more than
700 mm in the month of February and rises up to
900 mm in January (Tsuchiya et al. 2009). Due to

increase in rainfall intensity, the probability of landslide
occurrence, particularly shallow landslides increases
and is very sensitive to short-lasting high intensive rain-
fall (Hasnawir and Kubota 2012).
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Data preparation

To create landslide susceptibility map, selection of
appropriate data to be used is important, which helps to
yield successful results. To create spatial database of
landslide inventories and landslide causal factors in the
predicted area, management and selection of data should
be accurate. For the analysis of FR values Microsoft
Excel was used, whereas Statistical Package for the Social
Sciences (SPSS) was used to establish LR model.

Landslide inventories

Landslide inventories can be developed from field sur-
veys, by interpretation of remotely sensed images such
as based on the spectral characteristics, shape, contrast
and the morphological expression (Kanungo et al. 2006),
or aerial photographs (Ayalew and Yamagishi 2005) and
google image interpretation (Xu et al. 2013). Landslides
from 2004 to 2014 were collected from google earth

Page 4 of 16

image interpretations of Lompobattang Mountain. From
this, a total of 158 landslides were identified, which
cover an area of 3.44 km? Most of the landslides are of
shallow type with minimum and maximum landslide
area of 708 m> and 512,765 m” (0.51 km?) respectively.
The study area was limited to an altitude of 500 m, as
no landslide data were found below this altitude (Fig. 2).
Using the landslide data from Google Earth to GIS en-
vironment, we have to digitize the time series data from
google earth image interpretation. Then, these files were
saved as GIS compatible (kml) format and the data was
again subsequently changed into shapefile and then into
raster format.

Landslide causal factors

In susceptibility mapping, it is important to assume that
future landslides will occur in the same condition that
caused the past landslides. There are no strict guidelines
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for the selection of causal factors to be used in logistic
regression analysis, and as such, the covariates selected
vary widely between studies (Ayalew and Yamagishi
2005). In addition, the determination of landslide causal
factors were also associated with the availability of data.
The entire landslide causal factors that we have used in
this paper also fall in this category. Landslide data were
used as dependent variable of eight causal factors includ-
ing slope, curvature, aspect, distance from fault, distance
from road, distance from river, lithology and landuse
pattern which were selected as independent variables for
the landslide susceptibility mapping (Fig. 3). All of these
data are commonly used in landslide susceptibility map-
ping. Budimir et al. (2015) mentions that in a total of 37
parameters usually used slope, aspect, and lithology, are
significantly used particularly on studies related to
rainfall-induced landslides. In fact, the relevance of the
spatial data combination used in the prediction became
an important issue in landslide susceptibility mapping
(Dewitte et al. 2010).

The geology of the area was digitized from the Geology
Map of Geological Research Institute, produced by the
government board at a scale of 1:250.000 (Sukamto and
Supriatna 1982). This map includes the current study area.
The geology includes lithology, rock type and structure
(fault or lineament). Lithology is a part of basic data or pa-
rameters for landslide map analysis. In fact, Ermini et al.
(2005) mentioned that lithology is a classic variable that
controls landslide hazard. It is related to the material
strength, because they have varied composition and struc-
ture for different type of rocks (Kanungo et al. 2006), and
the resistance to driving forces depend on the rock
strength, in which the strongest rocks would be more re-
sistance. Lineaments are the structural features, which de-
scribe the zone/plane of weakness, fractures, and faults
along which landslide susceptibility is higher. It has gener-
ally been observed that the probability of landslide occur-
rence increases at sites close to lineaments, which not
only affect the surface material structures but also make
contribution to terrain permeability causing slope instabil-
ity. For this purpose, distance from fault was used to
analyze the relationship between landslide occurrences.
The proximity distance from fault was identified by buffer-
ing from lineament or fault map.

The topographic data used in the analysis include slope,
aspect and curvature. These data were derived from
ASTER DEM with a spatial resolution of 30 m. Using arc-
toolbox raster surface in ArcGIS, the slope angle, slope as-
pect and curvature were derived. On a slope of uniform
isotropic material, increased slope correlates with increased
likelihood of failure. In this study, we have used seven slope
categories, 0-5°, 5-10°, 10-20°, 20-30°, 40-50°, and above
50°, which were considered and represented in the form of
slope thematic data layer. Likewise the aspect map plays a
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significant role in slope stability assessment (Chauhan et al.
2010). In this study, aspect is divided into nine classes
namely, flat, N, NE, E, SE, S, SW, W, and NW. To describe
the variances among classes, aspect maps displayed the
distribution of each direction in the topography by using
different colors to each cell of the study area (Quan and
Lee 2012). Profile curvature was reclassified into three
classes namely concave, flat and convex. The curvature
values represent the morphology of the topography. In case
of profile curvature, generally related to the puddle condi-
tion after heavy rainfall. Profile curvature slope contains
more water and retains water from heavy rainfall for a lon-
ger period (Lee and Thalib 2005).

Besides topographic factors and geology, landuse (cover)
is a key factor responsible for landslide occurrences. The
incidence of landslide is inversely related to the vegetation
density. The landuse map was derived from Landsat 7
with 30 m x 30 m pixel, and its was established by BPDAS
Jeneberang Walanae in 2014 a board for watershed issued
at Ministry of Forestry in Indonesia (Balai Pengelolaan
Daerah Aliran Sungai Jeneberang Walanae 2014). The
landuse maps are usually classified into several classes, but
in this study, forest (including primary and secondary),
bushes, crop land (agriculture), and grass land were con-
sidered. Drainage lines and landslide occurrence in hilly
area have strong association between them due to ero-
sional activity. The distance from river was calculated by
buffering and analyses of river lines that were derived
from topographic map of scale 1:50.000 called Peta Rupa
Bumi Indonesia (RBI) prepared by the government. The
class starts from O to 50 m and ends with > 300 m. Simi-
larly, distance from river and distance from road were also
derived from topographic map.

Independent variables and dependent variables are
used as input maps and then processed by converting
them into raster maps of 30 m x 30 m pixel size. The
study area includes 390,837 pixels and the landslide data
used in the model include 3827 pixels.

Methods

Frequency ratio

The relationship between the landslide occurrence area
and the landslide causal factors could be deduced from
the relationship between areas where landslides had not
occurred and the landslide causal factors. In order to iden-
tify the closeness of their relationship, a simple statistical
technique has been applied to derive it with the frequency
ratio approach. Furthermore, FR model became valuable
in ranking the preferred causative factors based upon their
ability to control a landslide incident (Kannan et al. 2013),
because FR can describe clearly the difference of each
score between landslide causal factors in class and land-
slide occurrence. Thus, the number of landslide occur-
rence pixels on the area must be combined between
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causal factors. Then the ratio for each factors were calcu-
lated by dividing the landslide occurrence ratio with the
ratio of each class in causal factors (Lee and Thalib 2005).
A ratio value in each class shows the level of relationship

the given factors attribute between landslide occurrences
and when the ratio more than one means a stronger cor-
relation then a lower ratio than one suggest a lower cor-
relation (Lee and Pradhan 2006).
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The frequency ratio value can be calculated in the fol-
lowing manner;

i PixL

o DI
P(ij)/ > _Pix

(Where, PixcL(ij) number of pixel with landslide
within class i of j parameter, Pixcl(ij) Number of pixel in

class i of j parameter, YPixL total pixel of j parameter,
and X.Pix total pixel of the area).

(1)

Logistic regression model
The landslide susceptibility index was obtained by logistic
regression model. A simple introduction of logistic regres-
sion is available in Chau and Chan (2005) who define it as
the probability of landslide occurrence divided by the prob-
ability of no landslide occurrence. It is useful for predicting
the presence or absence of a characteristic or outcome
based on values of a set of predictor variables. Generally, in
logistic regression, the spatial prediction is modeled by a
dependent variable and independent variables (Shirzadi
et al. 2012) and it is useful when the dependent variable is
binary or dichotomous. Furthermore, Lee (2005) has stated
that advantage of logistic regression model is that, through
the addition of an appropriate link function to the usual
linear regression model. The variables may be either con-
tinuous or discrete, or any combination of both types and
they do not necessarily have normal distributions. The
probabilities of the regression can be understood as the
probability of one state of the dependent variable as they
are constrained to fall in the range of values from 0 to 1
(Xu et al. 2013) with zero indicating a 0 % probability of
landslide occurrences and one indicating a 100 % prob-
ability (Dai et al. 2004).

The logistic regression is based on logistic function
expressed as follows,

P=1/(1+expz) (2)

Where P: is the probability of landslide occurrence
that estimated values varies from 0 to 1. Variable Z is
landslide causal factors and assumed as a linear combin-
ation of the causal factors X; (i = 1,2,...n) as

Z =By+B;X;+BXy+ -+ B,X, (3)

Where B; are the coefficient of landslide causal factors.

Validation and verification

In addition to decrease inaccuracy of prediction and
probability, validation could raise the reliability. During
prediction modeling, the most important and the abso-
lute essential component is to carry out a validation of
the predicted results (Chung and Fabbri 2003). In this
study, the landslide inventories were divided into two
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parts; one for training and the other for validation. This
study uses 3117 (81 %) pixels of landslide inventories for
generating the model and 710 (19 %) pixels for valid-
ation. The main assumption in selecting of landslide
data for training and for validation is randomly on any
part of landslide occurrence of the study area and also
based on representation of the landslide area. To illus-
trate the procedure, a small part of the landslide prone
area was chosen as data for validation. The size, area,
depth of landslide and its distribution significantly varies
from place to place.

Moreover, we used ROC curve to plot the predicted
probability to comprehend issues of accuracy, criterion
selection, and interpretation. In order to validate the
landslide susceptibility map, AUC curve was used as a
measure of overall fit and comparison of modeled pre-
diction. The success rate was determined from the AUC
of training data set, and the prediction rate was calcu-
lated from the AUC of the validation dataset. The ROC
curves are significant for evaluating the predictive accur-
acy of a chosen model particularly in dichotomous stat-
istical modeling such as logistic regression (Gorsevski
et al. 2006), and the area under the curve obtained from
the ROC (receiver operating characteristics) plot is the
most preferred and applicable type of statistical assess-
ment (Akgun et al. 2012). The predicted probabilities
generated by the logistic model can be viewed as a con-
tinuous indicator to be compared with observed binary
response variable.

In this study, next validation process of showing the
level of accuracy of the LSM is by calculating the ratio
of landslide data for validation that falls into each sus-
ceptibility class (Fig. 4). The general assumption is that
most of the landslides for validation should fall on high
to higher susceptibility class.

Results and discussions

The application of frequency ratio

The frequency ratio method was used to find the cor-
relation between landslide locations in the past and
each factor that affects landslides. In general, factor
classes with a frequency ratio value of >1 will have
higher probability landslide occurrence. The number
of pixels of each class of causal factors were automat-
ically counted by using the reclassify tool in ArcGIS
software and the number pixels of landslide occur-
rence in each class of causal factors was found on
overlaying them. By using the Eq. 1, the ratio of each
class was calculated by dividing the number of pixels
in each factor’s class by the total number of pixels in
the entire study area. Then the frequency ratio values
of each factor classes were computed by dividing the
landslide percentage by the area of percentage as in
Table 1.
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Figure 5 shows correlation between landslide occur-
rence and each class of presence and absence landslides
inventories between each class of landslide causal fac-
tors. In the case of the relationship between landslide
occurrence and slope angle, slope below 30° has a ratio
of <1, which indicates a very low probability of landslide
occurrence. For slope above 30°, the ratio is >1, which
indicates a high probability of landslide occurrence.

In curvature class, the values represent the morph-
ology of topography. A convex indicates a positive value,
a concave indicates negative, and zero value indicates flat
surface. Comparing frequency ratio values of both con-
cave and convex, it is understood that the probability of
landslide occurrence is almost similar, with slightly
higher probability of landslide occurrence in case of con-
cave curvature. This might be due to the accumulation
of water in these classes. However, in the case of flat sur-
faces, the probability of landslide occurrence is very low.
In the case of aspect class, the south, southwest and

west facing slopes, frequency ratio is >1, which indicates
a high probability of landslide occurrence.

In the case of lithology classes, only Qlv has a ratio of >1
among the five lithology classes, which indicates high prob-
ability of landslide occurrence. Quarter lompobattang vol-
canic (Qlv) is one of the volcanic and sediment formation
in South Sulawesi area. In case of distance from fault, river
and road, ratio to distance/proximity is used to understand
the level of influence on landslide occurrence. Distance
from fault below 1000 m has a ratio of >1. This shows that
as distance from the fault decrease, the probability of
landslide occurrence increases. In case of distance from
road, the frequency ratio value is higher at a distance class
of >3000 m. Similarly, for the distance from river above
300 m has ratio of >1. In case of distance from rivers and
distance from roads, the landslide densities are higher for
distance classes far away. Forests and bushes in landuse
classes have a frequency ratio value of >1. Nevertheless in
the case of agriculture and grass land the ratio is <1.
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Table 1 Frequency ratio value for each landslide causal factors
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Factor Number of landslide % landslide (x) Number of pixel in class % class (y) Fr (x/y)
Topography
Slope Class in Degree
0-5 64 2.05 27,459 7.03 029
5-10 136 436 67,750 1733 0.25
10-20 472 15.14 137,617 3521 043
20-30 609 19.54 86,336 2209 0.88
30-40 840 26.95 45,954 11.76 2.29
40-50 734 23.55 19,573 5.01 4.70
> 50 262 841 6141 157 535
Curvature Class
Concave 1616 51.84 192,998 4938 1.05
Flat 15 048 5424 1.39 0.35
Convex 1486 47.67 192,408 4923 0.97
Aspect Class
Flat (-1) 5 0.16 1933 049 032
North (0-22.5) 159 5.10 22,786 583 0.87
North East (22.5-67.5) 353 11.32 53,942 13.80 0.82
East (67.5-112.5) 207 6.64 57,312 14.66 045
South East (112.5-157.5) 242 7.76 65,237 16.69 047
South (157.5-202.5) 540 1732 56,441 14.44 1.20
South West (2025-247.5) 834 26.76 46,535 1191 225
West (247.5-292.5) 372 1193 30,493 7.80 1.53
North West (292.5-337.5) 231 741 35,952 9.20 0.81
North (337.5-360) 174 558 20,199 5.17 1.08
Geology
Lithology Class
Tmcv (Volcanics of camba formation) 5 0.16 28,534 7.30 0.02
Qlvb (Quarter lompbattang volcanics breccia) 13 042 17,403 445 0.09
Qlv (Quarter lompbattang volcanics) 3080 98.81 332,091 84.97 1.16
Qlvp (Quarter lompbattang volcanics parasitic) - - 8643 2.21 -
Qlvc (Quarter lompbattang volcanics center ) 19 0.61 4159 1.06 0.57
Distance From fault (m)
0-500 886 2842 34,527 883 322
500-1000 952 30.54 35,187 9.00 3.39
1000-1500 296 9.50 35483 9.08 1.05
1500-2000 177 568 27,949 715 0.79
200-3000 411 13.19 50,855 13.01 1.01
3000-4000 263 844 47,642 12.19 0.69
4000-6000 63 202 81,203 20.78 0.10
6000-8000 69 2.21 53,027 13.57 0.16
8000-10,000 - - 21,147 541 -
10,000-12,000 - - 3810 097 -
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Table 1 Frequency ratio value for each landslide causal factors (Continued)

Proximity

Distance from Road (m)

0-500 114
500-750 84
750-1000 70
1000-2000 463
2000-3000 488
3000-4000 331
> 4000 1567

Distance from River (m)

0-50 213
50-100 220
100-150 227
150-200 285
200-250 293
250-300 291
>300 1588
Landuse

Landuse Class

Primary Dry Forest 994
Secondary Dry Forest 757
Bushes 977
Mix Dryland Agriculture 382
Forest Plant -
Open Land -
Grass Land 7
Paddy Field -

Dryland Agriculture -

3.66 155,239 3972 0.09
2.69 32,697 8.37 0.32
2.25 24,331 6.23 036
14.85 63,341 16.21 092
15.66 36,745 940 1.67
10.62 31,195 798 1.33
50.27 47,282 12.10 4.16
6.83 58,994 15.09 045
7.06 56,989 14.58 048
7.28 51,007 13.05 0.56
9.14 44,044 11.27 0.81
940 37,016 947 0.99
9.34 30,154 7.72 1.21
5095 112,626 2882 1.77
31.89 99,453 2545 1.25
2429 46,591 11.92 204
3134 83,215 21.29 147
12.26 133,251 34.09 036
- 3962 1.01 -

- 1601 041 -

0.22 1112 0.28 0.79
- 1533 5.00 -

- 2112 0.54 -

To create landslide susceptibility index, all the ratio of
raster map landslide causal factors were summed as fol-
lows as:

LSI = FR; + FRy + ..... + FR, (4)

Where FR;, FR,, FRs... FRn are the frequency ratio
raster maps of landslide causal factors. Index value using
frequency ratio fall in range 1.52 to 21.1. The higher
value of LSI indicates a higher susceptibility to landslide
and if LSI value lower indicates lower susceptibility to
landslide (Lee and Pradhan 2007).

Logistic regression model

Frequency ratio values show correlation between land-
slides and each class of landslide causal factors in nu-
merical format. The frequency ratio raster maps of
landslide causal factors with landslide and non-landslide
points was extracted using ArcGIS tool and saved into

dbf format. Then a logistic regression equation was ob-
tained by using SPSS software (Meten et al. 2015b).

A complete set for logistic regression analysis must
contain a set of independent variables (landslide causal
factors) and dichotomous dependent variables (landslide
inventories). Fixing the sample size to create an equation
in logistic regression analysis can be done in two ways,
i.e., using all pixel landslide causal factors in study area
and using equal number of dependent and independent
variables to reduce bias in the sampling process (Ramani
et al. 2011). In this study, the logistic regression model is
developed using equal proportion of landslide and non-
landslide pixels in ten iterations and using 50 % and all
non-landslide data as comparison.

The constant and coefficient of independent variables
were provided by logistic regression analysis using
SPSS. In case of using the number of equal proportion
of non-landslide pixels, they were selected randomly by
SPSS. Hence, this study proposes to investigate ten
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Fig. 5 Frequency ratio of the landslide causal factors

iteration to get best result and sense of fairness as
shown in Table 2.

Using the logistic regression model, the landslide oc-
currence probability was computed, and if values are
closer to one, landslides are more likely occur.

Validation

In landslide modeling, validation of predictive landslides
is an important part of the procedures for landslide
susceptibility mapping (Bui et al. 2012). The success rate
and prediction rate can be obtained by comparing the
landslide susceptibility results at known landslide locations.

In SPSS software, AUC of success rate was derived by link-
ing the landslide index in FR model using landslide data
for training. Subsequently, the AUC of predictive rate was
obtained by using landslide data for validation.

There are two steps to get the value of the AUC curve
as validation for fit of model using logistic regression in
this study. An equal number of landslide and non-
landslide data for training with landslide causal factors
were combined as a merge variable in SPSS. Then binary
logistic was chosen to establish the variables in equation
and probability result. Subsequently, the AUC for suc-
cess rate were obtained for each trial equation using
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Table 2 Logistic regression coefficient of landslide causal factors using equal proportion of landslide and non-landslide pixels

No. test Variables in the equation

Aspect Curvature Fault Lithology Landuse River Road Slope Constant
1 0.485 1.200 0.544 1.528 0.051 0.200 03N 0428 —5.867
2 0.560 1.200 0.506 1.778 0214 0.212 0.265 0414 —-6.300
3 0.554 0.871 0.501 2021 0.100 0.198 0259 0474 —6.152
4 0.605 1.231 0484 1.814 0.130 0.236 0.288 0.382 -6.312
5 0572 0.798 0492 1.692 0.110 0.189 0.293 0451 -5.737
6 0578 1303 0.508 1.965 0.139 0.181 0.289 0385 —6.506
7 0.573 1.008 0518 1922 0111 0.174 0.305 0447 -6.243
8 0482 1.112 0517 1.709 0.058 0.212 0.302 0439 -5973
9 0.547 1.091 0.520 1.666 0.046 0.151 0300 0417 —5.875
10 0618 1.033 0495 1.748 0.132 0.150 0.296 0.380 -6.012
" 0.761 0.558 0441 2.147 0443 0481 0.245 0.281 -10.664
12 0.763 0.562 0438 2.143 0468 0485 0.245 0279 -11.389

landslide data for training. The next step was to extract
each test into regression model (Egs. 2 and 3), and then
by using ArcGIS 10.0 Software, the Landslide Suscepti-
bility Index (LSI) maps were produced.

The AUC predictive curve was counted based on LSI
map as test variable and landslide data for validation as
state variable. Table 3 shows results of AUC curve for
both success rate and predictive rate for each test. As
comparison, the eleventh and twelfth tests were con-
ducted by using 50 % and all of the non-landslide pixels
respectively and the variables in equation were produced
in SPSS. The same procedures for equal number of land-
slide and non-landslide pixels were used to obtain AUC
success and predictive rate.

The closeness of success rate and predictive rate
values show how the logistic regression helps in land-
slide prediction in the future (Meten et al. 2015a). The
AUC curve determined by using validation dataset
should be approximately equal to the AUC curve deter-
mined by using the training dataset, but it is generally
lower than the success curve, because the landslide data
on validating area are not used for modelling (Ngadisih
et al. 2013).

In general, the AUC of ROC curves representing ex-
cellent, good, and valueless tests were plotted on the
graph. To classify the accuracy of a diagnostic test, the

value ranges from 0.50 to 0.60 (fail), 0.60—0.70 (poor),
0.70-0.80 (fair), 0.80-0.90 (good), and 0.90-1.00
(excellent). The results show that the entire test falls in
good category because the value ranges from 0.858 to
0.869 in success rate and 0.839 to 0.855 in predictive rate.

This study conducts one more validation to choose
the best statistical model for creating landslide suscepti-
bility map and the best equation in logistic regression
approach from the 12 tests. The sum of FR value and
equation of the LR models were used to create landslide
susceptibility map (LSM) by reclassifying LSI of the
models using natural breaks method. Overlaid landslide
data validation on LSM will describe another level of ac-
curacy beside AUC curve.

The natural breaks method or Jenks optimization
method has been used widely especially by planners and
it is designed to determine the best arrangement of
values into different classes. This method maximizes the
variance between classes and reduces the variance within
classes. The five classes include very low, low, moderate,
high and very high describing the level of landslide sus-
ceptibility (proneness) in the study area. The level of ac-
curacy of the landslide susceptibility map was verified by
overlaying with the landslide data for validation.

Table 3 shows the results of overlaid landslide data for
validation on LSM for LR model using equal number of

Table 3 AUC to ROC curve of success and predictive rate and ratio of landslide validation on landslide susceptibility map using FR

and LR model
Model FR LR

1 2 3 4 5 6 7 8 9 10 11 12
Success rate 0.858 0.867 0.864 0.866 0.861 0.866 0.864 0.869 0.865 0.862 0.858 0.859 0.839
Predictive rate 0.851 0.850 0.851 0.855 0.849 0.853 0.848 0.851 0.852 0.850 0.848 0.858 0.839
H-+VH 77.88 83.66 83.80 83.94 82.11 84.22 82.82 84.23 83.94 83.8 82.11 3239 30.28
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Table 4 The characteristics of susceptibility classes on LSM
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Class number  Reclassified index value  Susceptibility Class

Number of pixels

% area landslide
validation covered

Number of landslide
validation pixels

% area covered

Frequency Ratio Model

1 1.52-5.59 Very Low 108,965
2 5.59-7.83 Low 120,552
3 7.83-10.62 Moderate 78,033
4 10.62-14.24 High 57,067
5 14.24-21.10 Very High 26,213
390,830
Logistic regression model
1 0.004-0.089 Very Low 84,529
2 0.089-0.229 Low 130,898
3 0229-0413 Moderate 89,960
4 0413-0.671 High 62,094
5 0.671-0.985 Very High 23,349
390,830

27.88 17 2.39
30.85 75 10.56
19.97 65 9.15
14.60 235 33.09
6.71 318 44.79
710
2163 18 2.54
3349 61 859
23.02 33 465
15.89 119 16.76
597 479 67.46
710

landslide and non landslide pixels (test 1-10) were bet-
ter than for FR model, and at this point this study con-
cludes that the seventh test in LR model was the best fit
of model because the value is the highest.

The AUC of FR and LR model trial seventh was found
to be 0.858 and 0.869, which shows that the model is
capable of identifying landslide with 85.8 and 86.9 % ac-
curacy respectively. In case of AUC curve for predictive
rate, it was found to be 0.851 for FR and LR model,
which was lower than AUC curve for success rate of the
model (Fig. 6). The curve of the model and validation
proves that the susceptibility model is acceptable and
the model could be applied to predict the potential land-
slides in future.

As an interesting point to be noticed in Table 3, the
eleventh and twelfth tests have a good result in AUC
curve, which are 0.859 and 0.839 in success rate and
0.858 and 0.839 in predictive rate respectively. However,
overlaying LSM using landslide data validation in those
tests shows that the result decreases significantly to
32.39 and 30.28 % landslide covered on high to very high
class. This indicates that by using equal number of land-
slide and non-landslide pixels with landslide causal fac-
tors to determine the variable of equation is the most
reliable method to create a landslide susceptibility map.

Figure 7 shows the landslide susceptibility map using
FR model and the seventh test equation of LR
model. The LSM by LR model was obtained using the

40

% area covered FR
% area covered LR |

35 3349
30.85

Very Low Low Moderate High Very High

80

70 L - % area landslide FR
. % area landslide LR

67.46 |

Very Low Low Moderate High Very High

Fig. 8 Percentage of landslide susceptibility classes and percentage of landslides validation on landslide susceptibility map
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coefficient values of landslide causal factors as in the equa-
tion below

Z = 1.922 (lithology) + 1.008 (curvature) + 0.573 (Aspect)
+ (fault) + 0.447 (slope) + 0.305 (road) + 0.174 (river)
+ 0.111 (landuse) - 0.6243

(5)

The ranges of index value of each model in five classes
were established using natural breaks method.

Can et al. (2005) and Bai et al. (2010) stated two im-
portant guidance for validating landslide susceptibility
map i.e. 1) the high to very high class should cover only
small areas and 2) landslide data validation should lie in
high or very high classes. Table 4 shows the characteris-
tics of susceptibility class for FR and LR models. It
shows that the ratio of high to very high susceptibility
class covers small area. The ratio was obtained by divid-
ing the number of pixels in each class on LSM to the
total number of pixels. Furthermore, ratio of landslide
data for validation that fall on the LSM has a high value
on high to very high class compared to very low to low
class. The ratio was calculated by dividing the number of
landslide for validation pixels, which lies on each suscep-
tibility class to the total number of landslide for valid-
ation pixels. This method is similar to FR model or the
density method.

In general, the procedure of creating landslide suscep-
tibility map begins with use of data of landslide occur-
rence as dependent variable and landslide causal factors
as independent variable. Logically, landslide data covers
small area and occasionally in the form of scattered
areas in the entire study area. The accuracy of the pre-
dicted future landslide that laid on the LSM should have
lower ratio in the class of low to very low class and
higher in the high to very high class. Figure 8 shows, in
the case of the density ratio of area in low to very low
class on the LSM both the statistical models contain
more than 50 % of total area and the landslide data for
validation falls in the low to very low class on the LSM
map showed the ratio of below 12 %.

Conclusions

Besides creating landslide susceptibility maps, this re-
search shows the performance of Frequency Ratio (FR)
and Logistic Regression (LR) models as well. Two stages
of validation were carried out in this study. First, perfor-
mances of each landslide model were tested using AUC
curve for success and predictive rate, which is more than
83 %. In the second stage, ratio of landslides falling on
high to very high class of susceptibility was obtained,
which indicates the level of accuracy of the model. In
the FR model, 77.88 % landslides fall in the range of high
to very high class while in LR model, it is 84.23 %. Both
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the models show satisfactory results although LR model
using equal number of landslide and non-landslide pixels
shows slightly accurate results in total. From the logistic
regression equation, it can be concluded that the land-
slide causal factors (i.e., lithology, curvature, aspect, dis-
tance from fault and slope) have a significant influence
in causing landslides. The FR model is easy to apply,
while LR model is a complex procedure. This study also
shows that predicting future landslides by using logistic
regression could be the best choice although the result
will be more accurate on a larger scale, particularly at
topographic map and geological map. Susceptibility
mapping is an essential tool to delineate areas prone to
landslide, and it has become important information for
decision makers and government.
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