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Abstract

algorithms and neural networks were set.

the engineering geological conditions of these slopes.

Susceptibility evaluation

Background: In the last few decades, the development of Geographical Information Systems (GIS) technology has
provided a method for the evaluation of landslide susceptibility and hazard. Slope units were found to be
appropriate for the fundamental morphological elements in landslide susceptibility evaluation.

Results: Following the DEM construction in a loess area susceptible to landslides, the direct-reverse DEM
technology was employed to generate 216 slope units in the studied area. Of the 216 slope units, 123 involved
landslides. To analyze the mechanism of these landslides, six environmental factors were selected to evaluate
landslide occurrence: slope angle, aspect, the height and shape of the slope, distance to river and human activities.
The spatial analysis demonstrates that most of the landslides are located on convex slopes at an elevation of 100-
150 m with slope angles from 135°-225° and 40°-60°. Landslide occurrence was then checked according to these
environmental factors using an artificial neural network with back propagation, optimized by genetic algorithms.

A dataset of 120 slope units was chosen for training the neural network model, and the parameters of genetic

Conclusion: After training on the datasets, the susceptibility of landslides was mapped for the land-use plan and
hazard mitigation. Comparing the susceptibility map with landslide inventory, the verification shows satisfactory
agreement with an accuracy of 86.46% between the susceptibility map and the landslide locations. In the landslide
susceptibility assessment, ten new slopes were predicted to show potential for failure, which can be confirmed by
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Background

Landslides are local phenomena occurring in different
geomorphic contexts; they can be triggered by a variety of
mechanisms, such as earthquakes or rainfall, and some of
the causes are not yet well known. Landslides cannot be
predicted accurately; however, the susceptibility of a given
area to landslides can be determined and depicted using
hazard zonation. Various methods have been proposed
to partition landscape for the purpose of landslide
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hazard assessment and zonation mapping, including
grid cells, terrain units, unique-condition units, slope
units and topographic units (Carrara et al. 1991; van
Westen, 1994; Guzzetti et al. 1999; Chung and Fabbri,
2003). With respect to the landscape partitioning
methods mentioned above, slope units can be resized
according to the prevailing failure type and dimension,
thereby partitioning a river basin into nested subdivi-
sions: coarser for larger landslides and finer for smaller
failures. Because a clear physical relationship exists be-
tween landslides and the fundamental morphological
elements of a hilly or mountain region, namely, drain-
age and divided lines, the slope-unit technique seems
appropriate for landslide susceptibility assessment.
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A careful review of the concepts, principles, techniques
and methodologies for landslide susceptibility evaluation
reveals that the most commonly used methods are geo-
morphological hazard mapping, analysis of landslide in-
ventories, heuristic or index-based methods, functional,
statistically based models and geotechnical or physically
based models (Guzzetti et al. 1999; Wang et al. 2005; Fell
et al., 2008). Recently, probabilistic models such as fre-
quency ratio and logistic regression methods have been
applied to evaluate landslide susceptibility and have been
integrated with Geographical Information Systems (GIS)
(Ayalew and Yamagishi, 2005; Chung, 2006; Dahal et al.,
2008; Nefeslioglu, et al., 2008; Yilmaz, 2009; Bai et al.
2011; Garcia-Rodriguez and Malpica, 2010; Hasekiogullar
and Ercanoglu 2012; Martinovic et al., 2016). Due to geo-
logical complexity of slopes and self-organized system,
however, many variables are involved in slope stability
evaluation, and these variables display a highly nonlinear
relationship with the evaluation results. Under the consid-
eration of the nonlinear characteristics of the sliding
process, artificial neural networks (ANNs) have thus been
introduced to produce landslide susceptibility and hazard
maps (Ercanoglu and Gokceoglu, 2002; Neaupane and
Achet, 2004; Catani et al., 2005; Gémez and Kavzoglu,
2005; Kanungoa et al. 2006; Nefeslioglu, et al., 2008;
Nefeslioglua et al., 2011).

The main characteristics of ANNs dealing with
quantitative and qualitative indices include large-scale
parallel distributed processing, continuously nonlinear
dynamics, collective computation, high fault-tolerance,
self-organization, self-learning and real-time treatment
(Rumelhart and McClelland 1986). It is worth noting
that a neural network system is a processing device,
implemented as an algorithm or in hardware, whose de-
sign is inspired by the design and the function of mam-
malian brains; they react to training data input in such
a way to alter their initial state, and they learn using
unconventional algorithms. Neural networks integrated
with GIS may be an effective approach when dealing
with landslide hazard assessments where meaningful
outcomes are difficult to achieve by means of standard
mathematical models. Because artificial neural network
models are adaptive and capable of generalization, they
can handle imperfect or incomplete data and can capture
nonlinear and complex interactions among the several
variables of a system (Ermini et al. 2005; Melchiorre et al.
2008; Lee and Pradhan 2010; Conforti et al, 2014; Pham
et al, 2017).

However, it was found that the slow training speed
and difficulty in achieving a local minimum cannot be
resolved in practical applications for the most commonly
used back propagation neural networks (BPNN). To
solve this problem, several methods were proposed to
improve the training speed of networks, such as
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improving error functions and adjusting the studying
rates. For this kind of solutions, the BPNN is likely to
converge to a local solution, which may not be the global
solution, with the random selection of initial weights.
Thus, a global search algorithm was then introduced,
e.g., evolutionary programming, simulated annealing or
genetic algorithms (GAs) (Kavzoglu et al., 2015). Among
them, GA has mainly been used to search for the opti-
mal solution in BPNNs due to its excellent global search
ability (Holland 1975; Sexton and Gupta, 2000; Kesign,
2004; Madaeni, et al., 2010; Nourani, et al.,, 2014). There
are two main aspects of applying GA to BPNN:ss for find-
ing global optima in complex problems: one is to
optimize the weights of the network, and the other is to
optimize the topological structure of the network.

After an overview on landslide susceptibility using
ANNs, it was noted that the weights were randomly se-
lected and that the optimization cannot be carried out
for global searching. This paper thus proposes a hybrid
model of a GA and BPNN to evaluate landslide suscep-
tibility for the optimization of weights. In this study,
landslide inventory was mapped after detailed field
investigation and interpretation from high-resolution
imagery. The outline of the watershed polygons was
mapped as the ridge line using DEM, and reverse DEM
data were used to detect the valley line. The combined
DEM and reverse DEM, slope units were then mapped
within ArcGIS. After the definition of slope units, en-
vironmental factors were analyzed for the presence of
landslide occurrence, and a hybrid of GA and BPNN
was developed to evaluate landslide susceptibility. In
this method, the GA was used to search for the optimal
or approximately optimal connection weights and thresh-
olds for the networks, and then, using back-propagation
learning rules and training algorithms, the final weights
could be adjusted.

Study area

The study area is the Changshou Valley, which is
located northwest of Baoji city in Shaanxi Province
(Fig. 1). The elevation is approximately 600—700 m, and
the relative relief exceeds 100—350 m over the Changshou
valley. In this area, three main geomorphological units
may be distinguished: dissected loess plateau (yuan),
loess hills (mao), and loess ridges (liang). The lithology
of the strata in these units is mainly Neogene argillites
and fluvial deposits consisting of clayey silts and gravels
and Quaternary loess. The Yujian stream flows into the
Weihe. Due to the erosion of the Pliocene lacustrine basin
by stream systems and the reactivation of folds and faults,
a very unstable base was formed for the extensive
Quaternary loess deposits, which acts as the underlying
cause of the loess instability. Steep slopes around the
dissected loess plateau can be present in loess falling,
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Fig. 1 Geographical location of the study area marked by the red
rectangle (data from Google earth)

debris flow and translational slides. Five terraces of the
studied area are present in different slope angles, for
example, the slope of the fifth terrace is very steep
between 30 and 45°, while the slope angle of the third
terrace is from 26 to 30°. For the main lithology, loess
is known as a “problem soil”; although it can sustain
nearly vertical slopes when dry, it is susceptible to cata-
strophic failure on reaching certain critical moisture
contents. The underground water is originally from
the infiltration and water in rock joints. It can be di-
vided into different hydrological units due to cha-
racteristics of geomorphology and aquifer structure,
including units in high terrace, low terrace, sliding area
and Pliocene stratum.

Historical records show that three earthquakes with
Ms = 8 occurred on Loess Plateau, which triggered numer-
ous landslides in loess areas (Zhang et al. 1995; Derbyshire
et al. 1999). However, only three earthquakes with around
Ms 3.5 have been recorded in the study area.

The climate of the study area is notable for Asiatic
monsoons and marked seasonal shifts in dominant winds.
The mean annual temperature is 129 °C, and the
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maximum is up to 41.6 °C. The mean annual precipitation
reaches 679.1 mm, and almost 50% of the precipitation
falls in the period from July to September.

Data preparation
Landslide inventory
A landslide-inventory map was prepared primarily by the
interpretation of high-resolution imagery and secondarily
by site investigations. As shown in Fig. 2, 39 landslides in
the study area are classified into three types: paleo-
landslides, old landslides and recent landslides (Meng et
al. 2000). Fifty percent of landslides are old as dormant-
mature, and 25% have been reactivated recently. For all of
the landslides, the slope after failure averages 22.6°, with a
maximum of 45°. The slope gradients of large-scale land-
slides tend to be gentle, at approximately 18°, which im-
plies that most of the paleo-landslides in the study area
are stable.

It was also observed that the landslides are concen-
trated at the confluence of two streams. As described in

=4=-- Palaeo-slide
-—=2 01d slide

——4 Recent slide
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Fig. 2 Landslide inventory mapping in the Changshougou valley
.
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the previous section, these landslides are attributed to
the undercutting of the slopes associated with gullying.
Major factors affecting the initiation of slope failure
and subsequent modes of movement appear to be
dependent upon the morphology, the nature and degree
of weathering of the underlying bedrock, and the mois-
ture status of the loess deposits. Numerous ancillary
factors include bedrock-loess interface, slope steepness,
vegetation cover, and land utilization. As already noted,
the upper surface of the Neogene bedrock is often
weathered and contains variable amounts of smectites.
In this zone, wetting-drying results in a progressive de-
crease in strength that may ultimately lead to slope fail-
ure. Undercutting of the slopes along the gullies is
frequent, which increases the risk of slope failure. As a
result of the high relative relief, the steep slopes and
the relatively uniform geological and geomorphological
conditions, the landslides tend to be very large and to
occur in groups.

In terms of geological periods, landslides in the studied
area fall into three categories: palaeo-slides, old slides,
and recent slides. The most ancient landslides are not
traceable in the historical records, and some recent land-
slides keep moving. Typically, a swarm of landslides is
located at Zhuyuan village (Fig. 3), approximately 10 km
north of Baoji. The landslide mass is 1000 m wide and
850 m long, with an estimated volume of 5.1 x 10" m?,
Steeper slopes are generally over 40°around the crest,
with forested landslide terraces. Remote-sensing inter-
pretations and field investigations indicate a maximum

W [T paiecosiice
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Fig. 3 View of the Zhuyuan and Lijiaquan landslides from a
Quickbird image
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vertical displacement of 150 m along the slip surface of
the landslides. The shape and slope angle of the land-
slide scars suggest a single, major semi-circular failure
plane. For these studied landslides, the failure planes
occurred either along the contacts between the fluvial
deposits and the Neogene argillites or partially within
the bedrock. With regard to the Neogene argillite in
the loess plateau, the clay minerals are dominated by
illite, chlorite, smectite, and kaolinite, similar to the
overlying Quaternary loess (Peng and Guo 2007). This
type of argillite is thus subjected to long-term softening
due to saturation in the contact zone. After a point is
reached, at which they are no longer able to support
the overlying loess, a progressive failure occurs. The
occurrence of planar slides in the study area depends
on the shear-strength conditions of the failure surface
and the cohesion of the materials involved, usually
presented in the Malan loess and in reworked loess
slope deposits.

Defining slope units

In this study, a GIS-based hydrologic analysis and mod-
eling tool, Arc Hydro, is employed to draw the dividing
lines for forming slope units automatically. Arc Hydro
is an ArcGIS based software geared to support water
resources applications (Maidment et al. 2002). The soft-
ware provides a method for the delineation of water-
sheds and stream networks using digital elevation
models (DEM) of land-surface terrain. In the present
study, the topographic maps were used to produce
DEM with a contour interval of 10 m at a scale of
10,000. Using the DEM, the outlines of the watershed
polygons are topographically mapped as the ridge lines,
and the reverse DEM data can be used to detect the
valley lines (Xie et al. 2004). Using the DEM grid
analysis, high DEM values can be turned into low
values and low DEM values to high. After these values
change, the original valley line can be turned into a
ridge line. Meanwhile, the valley line can also be
obtained by watershed analysis of the reverse DEM
data. The combined DEM and reverse DEM analyses
map the slope units within the scope of ArcGIS in the
studied area (Fig. 4).

Selection of environmental factors

In these slope units, a variety of environmental factors
such as, slope angle, aspect, height and the shape of
slope were selected to evaluate landslide susceptibility.
Two more environmental factors were selected, namely,
distance to river and human activities.

(1)Slope angle
Using the function of Mean in the ArcGIS Spatial
Analyst model, an average slope angle was defined
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Fig. 4 Slope units from combination of DEM and reverse DEM

for each slope unit. In the study area, slope angles
were categorized into six classes: 0-20°, 21°-30°,
31°-40°,41°-50°, 51°-60° and larger than 60°
(Fig. 5).

(2)Slope height
Slope height plays an important role in landslide
occurrence, especially in loess areas. Considering
only the slope height for slope failures, higher
slopes can increase stress values in different areas
of slope, making the slopes unstable. The slope
height was classified into five classes: 0-50 m,
51-100 m, 101-150 m, 151-200 m and 201-300 m
(Fig. 6). Using Min and Max functions in the model of
ArcGIS Spatial Analyst, the slope height was obtained
from the difference of the minimum and maximum
elevation.

(3)Slope aspect
The slope aspect information can be obtained from
the Majority function within the ArcGIS. Aspect
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Fig. 5 Thematic map of the slope angle

was categorized as 0-15°,16°-90°, 91°-135°,
136°-180°, 181°-225°, 226°-270°, 271°-315 °
and 316°~360° (Fig. 7).

(4)Slope morphology
It is known that water concentrates in concave
topographic positions and makes the slope
susceptible to (sub) surface flow as the main
hydrological triggering mechanism. According to
the analysis of the relationships between the
landslide occurrence and slope morphology,
however, most of landslides are located in the
convex topographic positions (Fig. 8).

(5)Human activities
Human activities influence the susceptibility due to
the land use. In the Changshou valley, the land-use
is very homogenous. Forests are present closed to
the boundary of the loess plateau, upper the slope of
the valley. Areas covered by shrubby and herbaceous
vegetation are scattered into the study area, while
parts of space are open with more vegetation for



Wang et al. Geoenvironmental Disasters (2017) 4:15

Page 6 of 12

’e

N

v
T

-

i
5~
V=

| 0 15
s - Vi
[ [ 7 ).?:e.‘ . [ 136 - 180 > ~
s - 10 &5 4 S f, ; 181 - 225 & 7%
o1 - 150 o .‘&‘ ﬁ-{;\- 226 - 270 ‘ - . -8
[ 151 - 200 " B o - 315
B 20! - 300 [ 316 - 360
= 0 500 1,000 m = 0 500 1,000 m
e =] e e
Fig. 6 Thematic map of slope height Fig. 7 Thematic map of slope aspect
T =2 X_Xmin 1 1)
local farmers. In the analysis of human activity, the X xo T (
max min

influence was simply determined by whether the

slope area had been used for vegetation or not.
(6)Distance to river

The distance to the river is presented by the

proximity of the Changshougou valley and various

drainages. These data were obtained from the buffer

of rivers and drainages using maps at the scale of
1:25000 in ArcGIS.

Methods

Normalization of data

Input-output data for the GA-BPNN training and testing
are from a database, including slope, aspect, elevation,
shape of slope, distance to river and human activity. These
sets are utilized to test network modeling. As the dimen-
sion and magnitude of the original sample data are differ-
ent, the input and test data should be normalized before
training, i.e.,

where X represents the original data, X, and X,,;, are
the maximum and minimum of original data, respectively.
T is the target data after normalization.

GA-based BPNN
The BPNN is trained by repeatedly presenting a series
of input/output pattern sets to the networks. The net-
works gradually learn the input/output relationships of
interest by adjusting the network weights to minimize
the error between the actual and predicted output
patterns of the training sets (Fig. 9). After the learning
process is completed, the network weight coefficients
cannot be changed. In this model, the usage of networks
with only forward calculations is needed in pattern recog-
nition and prediction, and the calculation can be executed
very quickly.

The GA-based BPNN learning process consists of two
stages (Fig. 10): employing GAs to search for the optimal
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or approximate optimal connection weights and thresholds
for the networks and then using the back-propagation
learning rules and training algorithms to adjust the final
weights. The implementation procedure of the network
training is programmed within Matlab using the GAs and
Neural Networks Tool Boxes.

In this method, the BPNN weights and thresholds are
represented as genes in a chromosome, and the global
optimum is then searched for using the selection,

Inputs Hidden layers

Outputs

Fig. 9 Architecture of three-layer BPNN
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Fig. 10 Framework of GA-based BPNN
.

crossover and mutation operators of the genetic algo-
rithm. This procedure is completed by applying a BP
algorithm on the GA-established initial connection
weights and thresholds. If the BP network’s total mean
squared error is larger than the expected error, the
weights and thresholds will be updated; otherwise, they
are saved as initial value of the BP network training. To
train the BPNN, the learning rate was adjusted to fol-
low Eq. 2 using the momentum and the self-adapting
methods, which was programmed using Matlab.

1.05-Ir(k); mse(k + 1) < mse(k)
0.7-Ir(k); mse(k + 1) > 1.04mse(k)
Ir(k); else

Ir(k+1) =

(2)

where mse represents mean square errors for BPNN,
and k is training time.

Subsequently, they were further adjusted under the BP
learning rule to the best result, by which the landslide
susceptibility can be accurately predicted. The frame-
work is shown in Fig. 11 for landslide susceptibility using
GA-based BPNN.

Using BPNN modeling optimized by genetic algo-
rithms, the parameters of GAs and neural networks are
set in the present study. The population size is 100;
crossover probability is 0.65; mutation probability is
0.01; momentum factor is 0.60; learning rate is 0.7; max
learning number is 10000; and target error is 0.000001.



Wang et al. Geoenvironmental Disasters (2017) 4:15

Page 8 of 12

Geospatial | Landslide inventory |

| Geology | | Hydrology |

Database

Reverse DEM |

Modeling

Landslide
susceptibility

Fig. 11 Framework of landslide susceptibility using GA-based BPNN

—

Slope
Units

[ >

Shape of slope

Hydrogeology
condition

Human
engineering
activities

From a database of 216 landslides in units of slope, 120
landslides were randomly used for training the neural
network models, and 96 landslides were used for the val-
idation of landslide susceptibility.

For the GA-improved BPNN, the error sum of the
squares vs. the generation and fitness is shown in Figs. 12
and 13, respectively, in which red lines represent
sampling data, and blue lines are present for training
data. The final error is 9.96914e-007 from the relationship
of the epochs and errors in Fig. 14. It can be demonstrated
that the requirement was met for the BPNN training for
landslide susceptibility assessment.

Results and discussion

Following the process of mapping the slope units, the
environmental factors can be categorized into slope,
aspect, slope height, and the shape of the slope, human
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Sum-Squared Error

]

=

o
L
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150 1
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Generation

Fig. 12 The error sum of squares vs. generation

activity and distance to river. These factors were statis-
tically analyzed by slope units within the scope of GIS,
after the construction of the geo-database. As men-
tioned above, the geological condition is almost the
same in the study area, in which the strata in these
units are mainly Neogene argillites, and the fluvial de-
posits consist of clayey silts and gravels and Quaternary
loess. Due to human activity to effect the landslide sus-
ceptibility, it was simply determined by whether the
slope area had been used for vegetation or not. The
land use for vegetation needs more space and artificial
excavation, even irrigation, then affecting the stability
of landslides. With respect to the distance to river, the
buffer of the Changshougou valley and drainages was
selected for the analysis of susceptibility. A small num-
ber of landslides, which are closed to the river and
drainage, can be in partial deformation, especially at

training data

Fittness
o

sampling data

Generation

Fig. 13 Generation vs. fitness
- J
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the toe of slope due to erosion. The environmental
factors are analyzed by focusing on the slope parame-
ters, such as slope angle, aspect, height and the shape
of the slope.

According to the statistical analysis, 36% of the land-
slides occurred on slopes with angles between 40° and
50°, and 30% were occurred on slopes with angles from
50°-60° (Fig. 15). From the analysis of the relationships
between the slope height and landslide occurrence
(Fig. 16), almost 45% of the landslides occurred at ele-
vations between 100 and 150 m (Fig. 17). It was also
found that 38 and 56% of landslides were toward the
southeast and southwest, respectively. However, five
other variables made little contribution to the landslide
occurrence. In addition, it was also demonstrated that
the concave terrain was more stable, after large-scale
landslides were observed to have occurred in the loess
areas (Fig. 18).

After the GA-improved BPNN training, the suscepti-
bility of landslides was predicted, as shown in Fig. 19.
Comparing landslide occurrence with the susceptibility
map, it was noted that 40 of 43 units were accurately

evaluated as occurrence of landslides after prediction by
the GA-BPNN method, which means the accuracy of
prediction is 93.02%. Meanwhile, ten of 53 units without
landslide occurrence is predicted to be sliding area, and
the accuracy is 81.13%. To sum up, the verification dem-
onstrates satisfactory agreement with the accuracy of
86.46% obtained between the susceptibility map and
landslide locations. In this case study, it was also found
that some disadvantages can be overcome in the applica-
tion of BPNN, such as low convergence rates and sus-
ceptibility to local minimums, after the optimization was
carried out using GAs. To conclude, GA based BPNN
are an effective method to predict landslide susceptibility
with high accuracy.

Ten slopes (in yellow in Fig. 19) were predicted to be
prone to landslides. In view of the environmental factors,
all of these slopes were toward the southeast and south-
east, were higher than 100 m and had slope angles
greater than 43°. Furthermore, seven of the slopes were
in convex topographic conditions, whereas the other
slopes were located in concave topographic conditions.

As a useful tool, which addresses a nonlinear system
and is capable of response to inputs and adaptation to
the environment, the most widely used BPNNs are
capable of evaluating landslide susceptibility at both the
regional and site-specific scales (Lee et al. 2003; Neaupane
and Achet 2004). BPNNSs can be applied better over a wide
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area using non-parametric variables with large extensions.
However, BPNNs are prone to falling into local extremes,
and their convergence is slow. To overcome these draw-
backs, a GA-based BPNN was proposed to optimize the
neural network weights for landslide susceptibility assess-
ment, and the topology was subjectively kept in three
layers. In the optimization of the GA-based BPNN, the
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predicted L o 00 1000w

landslide P —

Fig. 19 Map with predicted landslide susceptibility (slopes potential
to landslides in yellow)
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number of neurons can be decided in the hidden layer by
the Kolmogorov theorem. For the training of the BPNN,
the weights and thresholds were represented as genes of a
chromosome, and the global optimum was then searched
for using the selection, crossover and mutation operators
of the genetic algorithm. To sum up, the advantages of
using genetic algorithms were based on the performance
of neural networks on the testing datasets, instead of only
on the minimal square error in the modeling datasets. In
addition, the minimal improvement of the genetic algo-
rithms in this study occurred in the ratios between the
numbers of chromosomes of a generation.

Conclusions

In this study, through the use of direct-reverse DEM
technology, the Changshougou valley was divided into
216 slope units, of which 123 units included landslides.
According to the mechanism analyses of the landslides
in the loess area, six environmental factors were se-
lected to evaluate landslide occurrence, such as slope
height, slope angle, aspect, shape of slope, distance to
rivers, and human activities. The spatial analysis shows
that most of landslides in the Changshougou valley are
located at an elevation of 100-150 m, have a slope
angle of 135°-225° and 40°-60° in the slope, and have
convex slope conditions. After the spatial analysis of
the environmental factors, a case study was presented
for landslide susceptibility prediction using BPNN model-
ing optimized by genetic algorithms. From a database of
216 slopes, 120 units, including 80 with landslide presence
and 40 without, were used for training the neural network
models, and 96 slopes, i.e., 43 with landslide presence and
53 without landslide presence, were used for the validation
of landslide susceptibility. Comparing landslide presence
with a susceptibility map, it was noted that the prediction
accuracy for landslide occurrence is 93.02%, whereas units
without landslide occurrence could be predicted with an
accuracy of 81.13%. It was also noted that 10 slopes were
predicted to be prone to landslides. In view of the environ-
mental factors, all of these slopes are toward southeast
and southeast, are at an elevation greater than 100 m, and
have slope angles greater than 43°. It was also noted that
seven of the slopes are in convex topographic conditions,
whereas the other slopes are located in concave topo-
graphic conditions. Furthermore, the prediction of 10
slopes can be used as a general planning tool but is not
intended for individual site-specific evaluations.
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