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Abstract

Shallow landslides occur frequently on the Aso volcanic mountains. The soil materials on the Aso volcanic
mountains consist of tephra layers formed by volcanic activities. This study is aimed to specify the physical
properties of soil that correlate with the sliding layer of a shallow landslide on the volcanic mountain area. Tephra
layers consist of kuroboku and scoria layers and the differences between these layers were specified using the
physical properties of soil methods. Results showed that the plasticity index and the fine fraction content can be
used for estimating the sliding layer in the Aso volcanic area.
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Introduction
Shallow landslides occur frequently on the Aso volcanic
mountains. Sediment disasters caused by the landslides re-
peatedly occurred in June 1953, July 1990, and June 2001,
with the last one occurring on July 12th, 2012 (Goto and
Kimura 2019; Higaki et al. 2019; Kimura et al. 2019; Miya-
buchi et al. 2004) when a cumulative rainfall of 508 mm
triggered numerous landslides throughout the month.
The soil materials in the shallow landslides on the Aso
volcanic mountains consist of tephra layers formed by vol-
canic activities. The tephra distribution was studied by
Miyabuchi et al. (2004) and Ono and Watanabe (1985).
The sliding layer of the shallow landslides on the Aso
volcanic mountains has been observed based on the dif-
ference in the value of hydraulic conductivity (Shimizu
and Ono 2016). The layer below the sliding layer has
lower hydraulic conductivity and the difference in the
hydraulic conductivity was the control on the tephra
layer (Shimizu and Ono 2016). Furthermore, Sato et al.
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(2017) and Sato et al. (2019) observed that the gravita-
tional deformation of the slope deposits on the Aso vol-
canic mountains resulted from the “flow” of the highly
permeable kuroboku layer over the less permeable
tephra layer.

However, the observation on the physical properties of
the tephra layer has not been clearly explained. The pur-
pose of this study aimed to observe the physical proper-
ties of soil that can be used for estimating the sliding
layer of the shallow landslide on the volcanic mountain
area. The soil materials were characterized using the
period of volcanic activities, and laboratory tests were
performed to observe the physical properties of tephra
layers. Characteristics of tephra layers will be observed
from the physical properties of soil by considering the
stratigraphic analysis of field observations.

Material and methods

Field measurements

Two locations of the shallow landslide in Takadake were
selected as the research area (Fig. 1). Takadake 1 is lo-
cated at 32° 53" 54.06" N, 131° 7’ 33.47" E with land-
slide dimensions of 34m in length and 10 m in width.
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Fig. 1 Shallow landslides in Aso mountains (Photos taken on October 2016) (Scale measured by geolocation software)
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The main soil layer was divided into 6 sub-layers from
the surface down to a depth of 1.39 m (Fig. 2). Takadake
2 is located at 32° 54" 8.22” N, 131° 7' 13.74" E with
landslide dimensions of 18 m in length and 39m in
width. The main soil layer in Takadake 2 was divided
into 7 sub-layers from the surface down to a depth of
1.37 m (Fig. 2). The main soil layers in each area were
defined from the surface down to 1.40 m because expos-
ure of the lowest sub-layer, Ojodake (OJS) scoria, was
difficult.

The soil hardness value was measured using the
Yamanaka-type soil hardness meter, which measures the
soil hardness by pushing the device into the exposed soil
layer at the site. In this study, the soil hardness values of
each sub-layer at Takadake 1 and of several sub-layers at
Takadake 2 were measured.

Laboratory tests

The physical property tests of soil performed in this
study include particle size distribution, liquid limit and
plastic limit, density of soil particles, and ignition loss,
which were performed according to the laboratory test-
ing standards of Geomaterials Vol. 1. Japanese Geotech-
nical Society Standards (2015). Laboratory tests were
performed to observe the physical properties of tephra
layers in this study.

Particle size distribution test was performed to observe
the relation between particle size (mm) and mass per-
centage passing (%) (JIS A1204, 2009 cited in JGS, 2015).
Furthermore, the water content of the soil under differ-
ent conditions, transition from plastic to liquid state (li-
quid limit), and transition from plastic to semi-solid
state (plastic limit) can be obtained by the liquid limit
and plastic limit tests (JIS A1205, 2009 cited in JGS,
2015). The density of soil particles test was also per-
formed to observe the mass per unit volume of the solid
part of the soil (JIS A1202, 2009 cited in JGS, 2015).
Moreover, the percentage of the reduction in soil mass
when heated to (750 + 50) °C relative to the soil mass when
oven-dried to a constant mass at (110 +5) °C can be ob-
tained by the ignition loss test (JIS A1226, 2009 cited in
JGS, 2015). The organic matter test was performed accord-
ing to Condie (1993), where the organic matter was speci-
fied by using oven-dried samples in ceramic crucibles with
a capacity of 50 mL at a temperature of 550 °C for 4 h.

Results and discussion

Stratigraphic analysis of the field observations

Figure 2 shows the tephra layer field observations. At
each area, the kuroboku colour is nearly black, which is
darker than the scoria layers. Kuroboku layers are lo-
cated on the scoria layers in each area. Takadake 1 has
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Fig. 2 Soil stratigraphy; dotted lines indicate sliding layer by field observation

two kuroboku layers with two scoria layers, both of
which are located on scoria layers (N1 kuroboku is lo-
cated on the N2 scoria and N3—4 kuroboku is located
on OJS scoria). Furthermore, Takadake 2 has three kuro-
boku layers with two scoria layers: N1 kuroboku and N2
kuroboku are located on the N2 scoria layer and N3-4
kuroboku is located on the OJS scoria layer. N3—4 kuro-
boku layer is divided into 2 sub-layers in each area, N3—
4 kuroboku (U) and N3—4 kuroboku (L), which aimed at
simplifying on the sliding layer estimation in this study.
Dissimilarity in soil hardness is observed between the
kuroboku and scoria layers. The soil hardness in Takadake
1 shows N2 scoria has the highest soil hardness value
(average = 18.5 mm) and topsoil has the lowest soil hard-
ness value (average=12.6mm). However, the soil

hardness value in Takadake 2 shows OJS scoria has the
highest value (average=23.9mm) and N3-4 kuroboku
has the lowest value (average = 18.1 mm). The low average
soil hardness indicates the location of the sliding layer.

Miyabuchi and Daimaru (2004) reported that the sliding
layers were formed near the boundary between the kuro-
boku and scoria layers. In this study, the low average soil
hardness value in each area is located at the N3—4 kuro-
boku layer; therefore, according to the stratigraphic ana-
lysis results of the field observations, the N3—4 kuroboku
layer is a sliding layer in the studied area.

Physical properties of tephra layers
The particle size distribution curve (Fig. 3) shows no
dissimilarities in the tephra layers in the research area
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Fig. 3 Particle size distribution curve show that all tephra layers indicate poorly-graded soil material

and all the tephra layers indicate poorly-graded soil
material. However, the fine fraction content (less than
0.075 mm) on tephra layer (Fig. 4) show the differ-
ence between kuroboku and scoria layers, where the
kuroboku layers have a higher fine fraction content
than the scoria layers in each area. Moreover, in
Takadake 1 and Takadake 2 the N3-4 kuroboku (L)
layers have the highest fine fraction content (Fig. 4).

Based on the results, the particle size distribution
curve does not show any dissimilarity between the
kuroboku and scoria layers; however, the fine fraction
content shows the dissimilarity between them. For
this reason, in this study the particle size distribution
curve is difficult to use for estimating the sliding
layer, but the fine fraction content can be used as a
factor for estimating the sliding layer.

Figure 5 shows the physical properties of the tephra
layer, which generally shows that the scoria and kuro-
boku layers are different. Scoria layers have a low fine
fraction content, plasticity index, ignition loss, and or-
ganic matter content and a high density of soil particles.
Meanwhile, kuroboku layers have high fine fraction con-
tent, plasticity index, and ignition loss and low density of
soil particles and organic matter content.

Ignition loss and organic matter content were per-
formed to observe the tephra layer carbon content. Pre-
vious research performed by Kato (1964) described
kuroboku as having humic acids, black in colour, and
high carbon content. Unfortunately, the density of soil
particles, ignition loss, and organic matter content values
present in Fig. 5 are not differentiated between the kuro-
boku and scoria layers in this study; therefore, these
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Fig. 5 Physical properties of soil and sliding layer; dotted lines indicated location of sliding layer by field observation

values could not be used as sliding layer indication
factors.

Figure 5 shows that the plasticity index is different be-
tween the kuroboku and scoria layers. The liquid limit
and plastic limit test results are plotted on a plasticity
chart (Fig. 6) to classify the tephra layers, which are sep-
arated between the sampling location (Takadake 1 and
Takadake 2) and the tephra layer type (kuroboku and
scoria). The Takadake 1 and Takadake 2 tephra layer

data are denoted by filled and un-filled symbols, respect-
ively. Furthermore, the kuroboku and scoria groups are
denoted by the line and dotted of ellipse symbols,
respectively.

The plotted data in Fig. 6 show a similar classification
of the tephra layer for Takadake 1 and Takadake 2. That
shows all of the plotted data on kuroboku layers are in-
organic silts of high compressibility and organic clays
and the OJS scoria layers plotted at the same location as
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Fig. 6 Plasticity chart shows the dissimilarity between kuroboku and scoria layers

the kuroboku layers. The N2 scoria layers, however,
are inorganic silts of medium compressibility and or-
ganic silts. The plasticity index and liquid limit values
of the kuroboku layers are different, but higher than
the scoria layers. The plotted data from Takadake 1
and Takadake 2 both show that the N3-4 kuroboku
(L) layer has the highest plasticity index and liquid
limit values, while the N2 scoria layer has the lowest
plasticity index and liquid limit values. Therefore, the
N3-4 kuroboku (L) layers (sliding layers) have the
highest values and are plotted in the kuroboku group
on the plasticity chart. The plasticity index and liquid
limit can be used as factors for estimating the sliding
layer.

According to the factors for estimating the sliding
layer, a correlation between the plasticity index and
fine fraction content is observed in Fig. 7, showing
nearly the same result as the plasticity chart. The cor-
relation shows the plotted data are separated between
the sampling location (Takadake 1 and Takadake 2)
and the tephra layer type (kuroboku and scoria). The
Takadake 1 and Takadake 2 tephra layer data are de-
noted by filled and un-filled symbols, respectively.
The data from Takadake 1 fitted to the Takadake 1
trend line, and the data from Takadake 2 also fitted
to the Takadake 2 trend line. The trend lines show
that the plasticity index is directly proportional to the

fine fraction content. Furthermore, the kuroboku and
scoria layers are denoted using the line and dotted of
ellipse symbols, respectively.

The correlation shows dissimilarity between the
kuroboku and the scoria layers. Scoria layers show
low fine fraction content and plasticity index values
and kuroboku layers show high fine fraction content
and plasticity index values. The data from Takadake
1 and Takadake 2 both show that the N3-4 kuro-
boku (L) layer has the highest plasticity index and
fine fraction content values, while the N2 scoria
layer has the lowest plasticity index and fine fraction
content values. Therefore, the sliding layers (N3-4
kuroboku (L)) are plotted in the kuroboku group on
the correlation and has the highest values of plasti-
city index and fine fraction content. However, the
plots of this correlation have a wide scattering,
which could be caused by the difference in soil ma-
terials in the different volcanic activity periods and
the historical landslides in the Aso volcanic
mountains.

Conclusion

The soil materials in the shallow landslides on the Aso
volcanic mountains were divided by volcanic activity
period and laboratory tests were performed to observe the
physical properties of each layer. Characteristics of tephra
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Fig. 7 Correlation between fine fraction content (%)-plasticity index shows dissimilarity between kuroboku and scoria

layers have been observed from the physical properties of
soil by considering the stratigraphic analysis of field obser-
vations. The kuroboku layers were located on the scoria
layers. Moreover, the average soil hardness value of the
kuroboku layers is lower than the scoria layers and the
low average soil hardness value indicates the location of
sliding layer. The stratigraphic analysis results of the field
observations show that the N3—4 kuroboku layer is the
sliding layer in the studied area.

The laboratory test results show that the kuroboku
and scoria layers have different physical properties of
soil. The kuroboku layers have higher fine fraction con-
tent and plasticity index values than the scoria layers. In
the studied areas, the correlation between the plasticity
index and fine fraction content clearly shows the N3-4
kuroboku (L) layers (sliding layers) have the highest
plasticity index and fine fraction content values and that
are plotted in the kuroboku group. According to these
results, the fine fraction content and plasticity index can
be used as factors for estimating the sliding layer in the
studied area. Additionally, the sliding layer in the vol-
canic area may have high fraction content and plasticity
index values.
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