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Abstract

Background: NASA’s developers recently proposed the Sudden Landslide Identification Product (SLIP) and
Detecting Real-Time Increased Precipitation (DRIP) algorithms. This double method uses Landsat 8 satellite images
and daily rainfall data for a real-time mapping of this geohazard. This study adapts the processing to face the issues
of data quality and unavailability/gaps for the mapping of the recent landslide events in west-Cameroon’s
highlands.

Methods: The SLIP algorithm is adapted, by integrating the inverse Normalized Difference Vegetation Index (NDVI)
to assess the soil bareness, the Modified Normalized Multi-Band Drought Index (MNMDI) combined with the
hydrothermal index to assess soil moisture, and the slope inclination to map the recent landslide. Further, the DRIP
algorithm uses the mean daily rainfall to assess the thresholds corresponding to the recent landslide events. Their
probability density function (PDF) curves are superimposed and their intersections are used to propose sets of
dichotomous variables before (1948–2018) and after the 28 October 2019 landslide event. In addition, a survival
analysis is performed to correlate landslide occurrence to rainfall, with the first known event in Cameroon as
starting point, and using the Cox model.

Results: From the SLIP model, the Landslide Hazard Zonation (LHZ) map gives an overall accuracy of 96%. Further,
the DRIP model states that 6/9 ranges of probability are rainfall-triggered landslides at 99.99%, between June and
October, while 3/9 ranges show only 4.88% of risk for the same interval. Finally, the survival probability for a known
site is up to 0.68 for the best value and between 0.38 and 0.1 for the lowest value through time.

Conclusions: The proposed approach is an alternative based on data (un)availability, completed by the site’s
lifetime analysis for a more flexibility in observation and prediction thresholding.

Keywords: SLIP, DRIP, Real-time mapping, Geohazard, West-Cameroon highlands, Rainfall-triggered landslides, Cox
model, LHZ
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Background
Landslides are natural events (Varnes, 1958, 1978 &
1984; Brusden, 1984; Crozier, 1986; Hutchinson, 1988;
Cruden, 1991; Cruden and Varnes, 1996; Courture,
2011; UNISDR,1 2017; USGS*, 2004). However, they may
turn into serious geohazards responsible for casualties
and economical losses worldwide (Petley, 2012). These
include loss of lives and damage to human settlements
and natural structures, which present a significant con-
straint for the development of the zones affected. Ac-
cording to the World Health Organization, landslides
affected an estimated 4.8 million people and caused
more than 18,000 deaths, between 1998 and 2017.2 It is
admitted that at least 90% of losses related can be
avoided if the problem is recognized before the landslide
occurrence (Brabb, 1993). Therefore, the mitigation
measures require to identify existing landslides, and/or
to predict of future events and endangered zones. One
main issue is that landslide inventories suffer from
underreporting at both regional and global scales
(UNISDR, 2017). Even in developed countries, the data-
base of landslide events is usually far from complete.
Significant gaps in available information additionally
contribute to the shortcomings of the inventories due to
the lack of routine global monitoring or cataloging sys-
tems, such as those available for hurricanes and earth-
quakes (Kirschbaum et al. 2009). However, mapping
landslide deformation and activity is fundamental for the
assessment and reduction of hazards and risks related
(Zhao and Lu, 2018). To the measures and sketches that
result from fieldwork (Yang et al., 2012 & 2015), Earth
Observatory (OE) brings the above view that is comple-
mentary to assess or predict the hazard.
Remote sensing data and the geospatial sciences are

very powerful tools to study the prevailing causal factors
and achieve that goal (Tofani et al., 2013). Their integra-
tion leads to a standard tool known as landslide suscep-
tibility mapping used around the world by various
researchers (Guzzetti et al., 1999; Van Westen et al.,
1999), which helps mapping the areas affected or model
the likelihood of future landslides based solely on the in-
trinsic properties of a site. The susceptibility of a given
area to landslides can be determined and depicted using
hazard zonation (Lin et al., 2017; Dahal and Dahal,
2017). Recent advances identify two sets of methods for
landslide hazard zonation (LHZ), such as heuristic
(knowledge-based) and data driven (statistical) ap-
proaches (Pardeshi et al., 2013; Roy and Saha, 2019).
The heuristic or qualitative approach relies on the dis-

tribution (inventory) analysis through field survey

mapping, historical records, satellite images and aerial
photo interpretation (Varnes, 1984; Cruden, 1991; Col-
ombo et al., 2005; Guzzetti et al. 2005; Galli et al., 2008).
Other researchers use decision-action processes and
weighing models, including the analytical hierarchy
process (AHP) and its different derivatives (Komac,
2006; Gosh et al. 2011; Kayastha et al., 2013; Wu et al.,
2016; Meena et al., 2019). The statistical or quantitative
approach include bivariate and multivariate modeling
methods to minimize subjectivity (Kanungo et al., 2006).
Amongst bivariate methods, weights of evidence model,
weighted overlay method, frequency ratio approach, in-
formation value method and fuzzy logic method are
used (Blahut et al. 2010) (Martha et al., 2013; Preuth,
et al., 2010; Lee, 2005; Sarkar et al., 2006; Singh et al.,
2011). Multivariate are specifically logistic regression
analysis, discriminant analysis, artificial neural network
(ANN) method and probabilistic approach (Guzzetti
et al., 2005, Wang and Sassa, 2005; Lee et al., 2008;
Kanungo et al., 2009; Pradhan and Lee, 2009; Bui et al.,
2012; Calvello et al., 2013, Meten et al., 2015; Anbalagan
et al., 2015).
Nowadays, the quantitative approach is supported by

several machine learning algorithms with better accur-
acy. They can be single or hybrids, and amongst them
are processing such as the support vector machine
(SVM), Random Forest (RF), Fisher’s Linear Discrimin-
ant Analysis (FLDA), Bayesian Network (BN), Logistic
Regression (LR), and Naïve Bayes (NB), or more recently
the AdaBoost, MultiBoost, Bagging, and Rotation Forest
(Marjanovic et al., 2011; Goetz et al., 2015; Pham et al.,
2016a & b; Ada and San, 2018; Pham et al., 2018; Shir-
zadi et al., 2018; Sharma and Mahajan, 2018; Garosi et al.,
2018; Cavanesi et al., 2020; Xiao, et al., 2020; Xiong
et al., 2020; Nam and Wang, 2020). Both qualitative and
quantitative methods keep improving their processes to
map and assess the areas affected.
Besides, a novelty approach has recently emerged,

ambitioning to fill the methodological voids of land-
slide monitoring. In a double set of processing, based
on the availability of hourly rainfall data and the
more recent free satellite images, instantaneous as-
sessment and prediction of landslide events be-
came possible for spatially extended regions thanks
to the analytical power and the flexibility of Google
Earth Engine platform and tools. The pioneering
model was developed in 2019 by a team of NASA’s
developers (Fayne et al., 2019) and is detailed in the
methodology section. This method is known as, the
Sudden Landslide Identification Product (SLIP), com-
bined with the Detecting Real-Time Increased Precipi-
tation (DRIP), to simultaneously map the affected
surface, as well as identifies intensity and timing of
rainfall that had triggered the event.

1United Nations Office for Disaster Risk Reduction; *United States
Geological Survey.
2https://www.who.int/health-topics/landslides#tab=tab_1.
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With the advantages of this latter, i.e., the opensource
data and the relative flexibility of the method that relies
on indices calculation and rainfall sequences, the present
study has envisaged to map the rainfall-triggered land-
slides events in west-Cameroon highlands, based on re-
cent deadly events. Nonetheless, there are several local
obstacles to its full implementation, among which three
majors: i) first of all, free Landsat 8 images covering the
area usually have at least 50% cloud cover in perman-
ence, and those less cloudy are unequally distributed in
time, thus making impossible an efficient monitoring
every 16 days; ii) the poor spatial and temporal data
availability, due to the insufficient number of stations
only present in few main cities, and the lack of hourly
records caused by obsolete materials; iii) at last, and non
the least issue, there is no a detailed and accurate land-
slide inventory in Cameroon, in terms of date, proper lo-
cation with geographical coordinates, and statistics on
social and economic losses. These lacks and gaps clearly
impede the full implementation of the SLIP/DRIP
model.
Therefore, this paper proposes a derivative SLIP/DRIP

procedure, adapted to countries and world’s areas facing
the same difficulties above-listed. This alternative fits in
this study, Cameroon’s local scientific and economic
conditions, by finding way-outs for efficient results,
adjusting the processing as possible to a context of miss-
ing data, and introducing a complementary process of
the survival analysis of (potentially) affected sites.

Study location
This study was carried out at a regional scale, on a sub-
set of Cameroon’s western highlands (Fig. 1a-c) covering
3930.35 km2. The area belongs to the Cameroon
Volcanic Line (CVL), one of the several segments of the
African Plate, oriented NE between 9 and 11° of latitude
and SW 5–7° East longitude and forming a horst
(Elsheikh et al., 2014; Wokwenmendam Nguet, 2019). It
is an area of transition between the Cameroon’s rainy
and dry areas. Its morphology is complex and consists of
high plateaus, volcanic massifs as well as plains or col-
lapse basins corresponding to the graben (Balla et al.,
2013). The three main morphological components are
the Bamenda Plateau (2200 m), the Bamiléké Plateau
(1400 to 1600m), and the Bamoun Plateau (1000 to
1300 m). Ages of the volcanic products along these edi-
fices range from the Eocene to the Pliocene periods
(Moundi et al., 2007; Moundi et al., 2008; Ngongang
et al., 2015). The Noun and Ndop plains are flatted ter-
rain, with average altitudes of 1000m while the Mbo
plain’s altitudes range from 700 to 800m, and there are
several volcanic lakes. The geological formations made up
of products of volcanic eruptions are lying on a basement
rocks of plutono-metamorphic nature, and of

Precambrian to Panafrican age (Njilah, 1991; Njonfang
et al., 1998; Djouka et al., 2008). These basement rocks are
usually associated with basic rocks (amphibolite and mon-
zodiorite) and are masked in some places by a thick vol-
canic cover.
Annual rainfall increases from 100mm to more than

3300 mm in the southern part around the city of Bafous-
sam, and 20 mm to more than 2400mm when evolving
to the northern part around Njimom due to the high
altitude (Local agro-meteorology offices, Annual re-
ports). Twelve months average temperature is between
26° and 28° Celsius. The vegetation mixes highlands for-
est and sub-tropical savannah, depending on the rainfall
and the sun exposition. The population is 1,720,047 in-
habitants, with a density of 124 inhabitants per km2.
In addition to the rainfall spatial distribution (Fig. 1d

& e), human activities and settlements such as agricul-
ture or buildings, mainly occupy slopes or shallows, ex-
posing populations to natural hazards. For instance, on
the 4th and 5th September 2018, terrain cracking
followed by blocks slides damaged dozens of houses in
the city of Foumban (IGMR-Penaye et al., 2018; Fig. 2a),
caused the delocalization of hundreds of inhabitants.
More recently, during the night of 27 to 28 October
2019, a long and huge rainfall of about 36 h triggered a
rotational to translational landslide in Bafoussam
(IGMR-Kankeu & Ntchantcho, 2019; Fig. 2b), the deadli-
est in that area with 45 deaths, dozens of missing people
and at least 100 houses destroyed. Moreover, since the
1950’s, more than 136 deaths were recorded in the area
(Tchindjang, 2012 & 2013). This context justifies the
present research, to support Cameroon’s government in
anticipating such events and planning efficient mitiga-
tion actions.

Methodology
Original steps of SLIP/DRIP methodology
In 2019, National Aeronautics and Space Administra-
tion’s (NASA) developers proposed the SLIP and DRIP
methodology, to automate rainfall-induced landslide
identification in Nepal, by using open-source imagery
and without the use of proprietary classification software
(Fayne et al., 2019). It is a two-sided approach, that uses
Landsat-8 imagery satellite imagery data to approximate
visible landscape changes, and precipitation data for the
landslide event’s timing. Python 3 programming lan-
guage and Google Earth Engine cloud environment sup-
port the computations, and the data analysis is based on
a spectral band analysis and combined with ancillary
field data.
Sudden Landslide Identification Product (SLIP) algo-

rithm takes advantage of spectral properties of vegeta-
tion, slope, land-cover type, and soil moisture in
biweekly (16 days) time steps to identify the affected area
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Fig. 1 The study location: A Landslides events on the elevation background in Cameroon, B & C Subsets of elevation and Landsat 8 satellite
image. D Interpolation of average rainfall for August 2019, E Interpolation of days of rainfall for August 2019
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by a landslide right after the event, based on fresh bare-
earth exposure, and predict areas potentially exposed to
upcoming events.
The spectral red band is computed for Landsat-8, band

4, and computed as a percentage between the 10 com-
posed recent images before the landslide and the most
recent post-event images. Areas with at least a 40% in-
crease in red reflectance are considered bare-earth, af-
fected by the studied most recent landslide or exposed
to landslide according to this criterion. To pursue, the
soil moisture is assessed by adapting Normalized Multi-
Band Drought Index, NMDI, of Wang and Qu (2007), to
Landsat 8 spectroscopy. Basically, the NMDI monitors
the soil and vegetation moisture using the following ex-
pression (1):

NMDI ¼ R860nm− R1640nm−R2130nmð Þ
R860nm þ R1640nm−R2130nmð Þ ð1Þ

where R860nm, R1640nm and R2130nm represent the appar-
ent at-sensor reflectance absorbed in the NIR and two
SWIR wavelengths of the MODIS sensor measurements.
However, the integration of the Landsat-8 band 6 that is
closest to R1640nm, gave poor results, and only bands 5
and 7 are used. The last step integrates a Digital Eleva-
tion Model’s (DEM) slopes generating and thresholding.
The slope values are extracted in degrees and their inter-
vals are classified as follows: gentle (0°–20°), fairly steep
(20°–35°), steep (35°–45°), very steep (45°–60°), and ex-
tremely steep (60°–90°). All the values ≥20° are consid-
ered to be landslide-triggering.
Further, noticing that a predominant triggering mechan-

ism for landslides is rainfall (Petley et al. 2005), the Detect-
ing Real-Time Increased Precipitation (DRIP) model
leverage of NASA’s Global Precipitation Measurement
(GPM) was (re)built. It provides precipitation data with a
more precise temporal window of occurrence for each po-
tential event (Fayne et al., 2019). The DRIP algorithm

identifies the likely timing of rainfall’s peak, i.e., day and/
or hour of the day, that has triggered the studied landslide
event, and that matches the SLIP detected areas, every 16
days. Windows of 24, 48 and 72 h are tested to obtain con-
tinuous rainfall data and integrate into the model.

Data acquisition and preprocessing
This experiment was conducted in a desktop script en-
vironment of licensed software, Erdas Imagine 2020 ver-
sion 16.6.0.1366, ArcGisPro version 2.5 and XLStats
2020.1.64570. Twelve Landsat 8 satellite images were
downloaded from the United States Geological Survey
website, and the landslide of the 28 October 2019 was
fixed as origin. These were then distributed such as 11
before and one after the event (Appendix 1). Due to the
important cloud cover in the rainy season, and its effect
on interrupting the 16-days temporal resolution neces-
sary for the processing, all the best images available were
collected, several from the dry season, i.e., December to
March, for at least two images per year. Basically, free
Landsat images are all level-1 products, and delivered as
digital numbers (DNs). The bands used here are 2 to 7,
namely bands blue to SWIR2, with a spatial resolution
of 30 m, and the panchromatic band (Band8) was used
to rescale the spatial resolution to 15m (Table 1).
Applying the Cosine Solar TAUZ (COST) radiometric

calibration model of Chavez (1996) to the stacked image,
blue-SWIR2, the digital numbers were converted from at-
sensor radiance to top-of-atmosphere (TOA) reflectance via
solar correction, and rescaled from 64-bit to unsigned 8-bit.
Therefore, atmospheric corrections and haze reduction have
helped to remove other noises and then approximate values
of surface reflectance. The last step concerned the topo-
graphic correction that had addressed altitude artifacts. For
the purpose of rainy season’s land cover estimation, a classifi-
cation map, change detection image and area expand func-
tion were applied (Appendix 2).

Fig. 2 Unscaled partial views of the scarps leaved by landslides of Foumban (in 2018) and Bafoussam (in 2019) – Both events were sudden with
transitional to rotational movements, but the one in Foumban happened in one step, while the one in Bafoussam happened in three steps
(yellow dashed), justifying three main blocks/stairs. Based on the soil horizontal surface, the sliding depths (arrows) are 5 m in Foumban, and 1 to
5 m in Bafoussam. The affected area was ≈30,100m2 in Foumban (IGMR-Penaye et al., 2018) and ≈ 15,051m2 in Bafoussam (IGMR-Kankeu &
Ntchantcho, 2019)
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The other entry is the Shuttle Radar Topography Mis-
sion (SRTM) image of the area with a spatial resolution
of 30 m. It was also downloaded from the USGS website
and preprocessed by using the void fill method to cre-
ate a Digital Elevation Model (DEM) and reduce the er-
rors of commission in flat areas where landslides are
unlikely, such as riverbeds, which may have similar red
reflectance and moisture characteristics (Jiménez-Perál-
varez et al. 2011; Fayne et al., 2019). Its integration into
the model helps defining the slopes threshold for land-
slide triggering.
Another entry concerns the precipitation data. These

data were combined from three main sources. The
Tropical Rainfall Measuring Mission (TRMM) (Braun,
2011), Tropical Applications of Meteorology using Satel-
lite data (TAMSAT) (Maidment et al., 2014) and some
local meteorology services.

Adapted SLIP algorithm
The first step is defining the soil exposure, i.e., the per-
centage of non-vegetated land. Fayne et al. (2019) pro-
posed it as a rate of change in the red band reflectance
between the current image before the landslide and a
composed image of the 10 red bands of the images be-
fore the landslide. The formula is expressed as follows
(2):

%Redchange ¼ Redcurrent−Redcomposite

Redcomposite

� �
�100 ð2Þ

Where Redcurrent is the most recent Red band during
or just after the landslide and is the 10 recent red bands
just before the landslide. Then, the images should be
collected for consecutives 16-days. In the present study,
regarding the gap of almost 10 months in the same year
between two Landsat 8 usable images, the percentage
formula described above was leading to infinite values.

Then the red difference was modified to an Inverse Nor-
malized Difference Vegetation Index, INDVI, to assess
the non-vegetated land. The INDVI is proposed as the
spectral difference between the red and the NIR wave-
length, such as (3):

INDVI ¼ Red−NIR
RedþNIR

ð3Þ

After an average of the INDVI was computed for the
10 oldest images, referring to the landslide of the 28 Oc-
tober 2019 in Bafoussam. Then, the average INDVI was
subtracted from December 2019 INDVI and the result-
ing image was normalized in percentage to obtain the
fraction of non-vegetated land (4):

INDVIn ¼ INDVI−INDVImin
INDVImax−INDVImin

�100 ð4Þ

Where INDVIn stands for the normalized INDVI image,
min and max are the minimum and the maximum of the
INDVI. Values starting at 40% were selected as indicators
for soil exposure to landslides as proposed by Fayne et al.
(2019). A binned image was then created, with 0 for vege-
tated areas and 1 for non-vegetated areas, i.e., bare soil.
Then, the vegetated class was expanded with factor 2 to
approximate the land surface coverage in the rainy season,
according to the classification statistics (Appendix 2).
Further, the soil moisture was assessed by using two

indices. On one hand, the Modified Normalized Multi-
Band Drought Index (MNMDI) (Fayne et al., 2019) was
computed between the near infrared (NIR) and the
shortwave infrared (SWIR2) bands (5):

MNMDI ¼ NIR−SWIR2
NIRþ SWIR2

ð5Þ

To confirm and complete the soil moisture information,
the hydrothermal index composite was computed on the

Table 1 Landsat OLI-TIRS bands characteristic

Spectral bands Wavelengths Range (μm) Spatial Resolution (m)

Band 1 - Ultra Blue 0.435–0.451 30

Band 2 - Blue 0.452–0.512 30

Band 3 - Green 0.533–0.590 30

Band 4 - Red 0.636–0.673 30

Band 5 - Near Infrared 0.851–0.879 30

Band 6 - Shortwave Infrared 1.566–1.651 30

Band 7 - Shortwave Infrared 2.107–2.294 30

Band 8 - Panchromatic 0.503–0.676 15

Band 9 - Cirrus 1.363–1.384 30

Band 10 - Thermal Infrared 10.60–11.19 100

Band 11 - Thermal Infrared 11.50–12.51 100
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other hand. This index is used to enhance soils, rocks and
minerals, as well as vegetation cover at a regional scale,
based on a multiple ratios approach computation between
the visible and infrared wavelengths (Pour, 2014). The
concerned band ratios are SWIR1/SWIR (6/7), Red/Blue
(4/2), and NIR/Red (5/4), while the result is a three princi-
pal components analysis image (Erdas Imagine, 2008). A
linear regression was performed between each principal
component and the MNMDI image, showing that the
hydrothermal index PC3 was positively correlated to
MNMDI with the highest determination coefficient (R2)
up to 82% (appendix 3). The hydrothermal PC3 and the
MNMDI stretching ranges are [0–11] and [− 1.205–0.915]
respectively, their moisture thresholds were identified be-
tween [1.5–11] and [0.08–0.915] to create binned images.
By adding up the two binned images, a new one was ob-
tained, and then weighted 0 for no humidity and 0.75 for
moisture.
As last step, the slope inclination value was computed

based on the preprocessed DEM. In the Cameroon’s
landslides history and for the western highlands in spe-
cifically, the lowest slope for the hazard’s occurrence
was at Koutaba (in 2001; 2 deaths) on a slope of 220

(IGMR-Penaye et al., 2018; IGMR-Kankeu &
Ntchantcho, 2019). For this reason, we choose the
threshold 20°, proposed by Fayne et al. (2019) as signifi-
cant to trigger landslide. After performing the hillshade
processing to better highlight summits and valleys, the
slope image was extracted in degrees. A binned image
was coded, 0 for slopes less than 20°, and 0.5 for slopes
at or above 20°. The three conditioned layers binned
values are in Table 2.
The three layers were integrated using a simple

weighted linear combination (SWLC) to map the
areas where the conditions were met for sudden land-
slides. There are eight different values corresponding
to the LHZ codes (Table 3). The SLIP process is de-
scribed in Fig. 3 and the layers are represented in
Fig. 4.
To validate the whole SLIP process, verification sites

were chosen for each occurrence site, such as 2 in kou-
taba, 2 in Foumban and 5 in Bafoussam. The matching
with affected sites defines accuracy.
Only remains the triggering factor identified as a long

and huge rainfall. DRIP algorithm helps to model it.

Adapted DRIP algorithm
The DRIP tool is adapted as the rainfall intensity and
threshold corresponding to the SLIP landslide map-
ping. Monthly precipitations of the west-Cameroon
were computed between 1948 and 2017 for Africa,
completed for years 2018 and 2019 (Table 2). Accord-
ing to the Tropical Applications of Meteorology using
Satellite and ground-based observations (TAMSAT)
data, especially its TRMM Multi-satellite Precipitation
Analysis (TMPA) datasets component and mapping
models, daily rainfall for the Cameroons’ west-
highlands were between 6 mm and more than 10 mm
between 1983 and 2012 (Maidment et al., 2014). The
annual highest rainfall period is between the second
decade of June and the first decade of October, with
at least 15 mm to more than 25 mm per day (Maid-
ment et al., 2014; Dezfuli et al., 2017). The rainfall
data collected by the local agro-meteorology offices
(October 2019) assess the rainfall of 28 to 29 October
in Bafoussam up to 81 mm, in about 36 h, before the
landslide. This represents 22% of the 384 mm re-
corded for that month (Appendix 4). Ten groups of
rainfall records were defined between June and Octo-
ber, that is 50 observations (Appendix 4). The
month’s selection is explained by the fact that all the
landslides in Cameroon occurred in that 5 months
interval, corresponding to the full rainy season
(Table 4).
The rainfall increases from June to September with

highest records in August, and decreases in October,
before stopping in November. The trends are the
same for the number of rainy days, although some
local differences can be barely noticed between two
zones. In addition, the rainfall zonation was done
from the lower (zone 1) to the higher (zone10) re-
cords. Samples of zones 1 and 8 illustrate these two
statements for 2019 (Fig. 5).
The general trend gives an average rainfall of 2615mm for

1948–2018 and 2573mm in 2019, representing respectively
79% and 78% of the 3300mm maximum annual rainfall.

Table 2 SLIP conditioned layers

Conditions for LHZ

Excluded Included

Bare soil 0 1

Soil moisture 0 0.75

Slope inclination 0 0.5

Table 3 LHZ codes and explanation

Codes Conditions met

0 None

0.5 Slope inclination

0.75 Soil moisture

1 Bare soil

1.25 Soil moisture & Slope inclination

1.5 Bare soil & Slope inclination

1.75 Bare soil & Soil moisture

2.25 Bare soil & Soil moisture & Slope inclination
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August represents 25% of the 5 months and October records
about 14% (Fig. 6). Moreover, the 81mm of rainfall preced-
ing the October 2019 landslide event represent 3.1% of the 5
months and almost four times the total daily rainfall, as
mapped by Maidment et al. (2014) and Dezfuli et al. (2017).
From the Table 4 above (including years 2012 to 2017),

approximately 53 landslides have occurred in Cameroon
between 1954 and 2019, and were all directly related to
huge rainfall. As Fig. 7 illustrates, the highest month fre-
quency corresponds to September with 24 occurrences
(45%), followed by August with 12 occurrences (22%),
October with 11 occurrences (21%), while June and July
record the lowest same frequency of 3 occurrences (6%).
Further, their statistical distribution and variability were

assessed by using the Weibull distribution. This method cal-
culates a cumulative distribution function (CDF) or a prob-
ability density function (PDF) using the following eq. (6):

f xð Þ ¼ γ
α

x−μ
α

� �γ−1
exp − x−μð Þ=αð Þγð Þ ð6Þ

With x ≥ μ; y, a > 0
Where the parameters are γ the shape, μ the location

and α the scale. Because the Weibull model studies
strength and failure of a system in relation with time
(Klein, 2009), this study assesses the stronger relationship
to the failures between rainfall and days of rainfall for the
period 1948–2018 average, and then for the year 2019,
setting =0.5 . The rainfall and days of rainfall data were
rescaled by using the following ratios:

a) [monthly rainfall ÷monthly total of rainy days]
b) [monthly rainy days ÷monthly total days]

The probabilities of failure and success were defined
for both sets of data such as (7, 8):

PF xð Þ¼ nx

Nþ1
ð7Þ

PS xð Þ¼1−PF ð8Þ
With PF and PS representing the probability of strength

to failure and the probability of success. Then, their prob-
abilities of strength to failure are suitable to be used as the
z value in the standard PDF computation, which is defined
as a normal distribution. Purposely and based on the data,
the averages (≈3 and ≈4) and the standard deviations (≈1)
of the mean daily rainfall and days of rainfall were com-
puted for the two periods, and the PDF curves were super-
imposed on each other to find intersections (Fig. 8a & b).
From the intersection of the two PDF curves, a set of

thresholds were defined in a conditioning algorithm, with
six explanatory variables (X), i.e., before landslide (1948–
2018) and one dependent variable (Y), i.e., after landslide
(2019). The whole conditioning algorithm is written in eq.
9 (i-vii) as follows:

X1:1: ¼ 1 if PDF1948−2018 rainfall frequency≤0:229
0 Otherwise

�

Fig. 3 Workflow of the SLIP process
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X1:2: ¼ 1 if 0:228 > PDF1948−2018 rainfall frequency≤0:394
0 Otherwise

�

X1:3: ¼ 1 if 0:394 > PDF1948−2018 rainfall frequency
0 Otherwise

�

X2:1: ¼ 1 if PDF1948−2018 days of rainfall frequency≤0:229
0 Otherwise

�

X2:2: ¼ 1 if 0:229 > PDF1948−2018 days of rainfall frequency≤0:394
0 Otherwise

�

X2:3: ¼ 1 if 0:394 > PDF1948−2018 days of rainfall frequency
0 Otherwise

�

Fig. 4 SLIP stretched and conditioned layers
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Table 4 Landslide causes and consequences in Cameroon to the best of recording

Month/Year Location Causes Main casualties and losses

September 1954 Nchingang,
Lebialem

Slopes’ agriculture, woodcutting
and huge rainfall

Bridges destroyed followed by flooding

September 1956 Beine, Lebialem Slopes’ agriculture and huge rainfall 3 deaths; houses and bridges destroyed followed by
flooding; farms flooded and destroyed

September 1957 Fomenji, Lebialem Huge rainfall 12 deaths, bridges and farms destroyed

August 1973 Fonengé,
Lebialem

Huge rainfall 1 death; dozens of houses destroyed; 300 homeless

August 1978 Fossong-
Wetcheng
(Dshang)

Huge rainfall 6 deaths; farms destroyed

June 1988 Bamboko, Melong
mt Manengouba

Huge rainfall 8 deaths; bridges and houses destroyed

June 1991 Pinyin Thundershowers Plantations destroyed

July 1991 Limbe, Mt
Cameroun

Public works on slopes; Huge
rainfall

1 death; 1 house destroyed

September 1991 Pinyin, Santa,
Bamenda

Slopes’ agriculture and huge rainfall 12 deaths; 2 houses destroyed

12 September 1992 Santa, Bamenda Slopes’ agriculture and huge rainfall 12 deaths; 5 houses destroyed

September 1992 Fomenji, Abi,
Fonengé

Slopes’ agriculture and huge rainfall 12 deaths; houses, bridges and farms destroyed

September 1993 Bafaka Huge rainfall Farms and houses destroyed

September 1994 Fomenji, fotang,
Fonengé

Slopes’ agriculture and huge rainfall 6 bridges and 10 houses destroyed

September 1995 Bafaka, Ndian, Mt
Rumpi

Earthquakes (intensity VII on Richter
scale) and rainfall

3 deaths; 1 house, farms and forests destroyed.

September 1997 Sho, Belo Huge rainfall; perched water source;
slopes’ agriculture; woodcutting

2 deaths; 1 house, 1 road destroyed followed by
several weeks of traffic interruption; farms destroyed.

September 1997 Gouata, Dschang
(Mt Bamboutos)

Huge rainfall 1 death and farms destroyed

September 1997 Batié Sand digging and huge rainfall Farms destroyed

July 1998 Bingo, Belo Huge rainfall 5 deaths and 3 houses destroyed

August 1998 Bamumba,
wabane Lebialem

Slight earth shaking and rainfall 5 injured; 11 houses destroyed; bridges and farms
destroyed.

August 1998 Abi, Ako, Atsuela,
Babong

Rainfall 1 injured; houses and farms destroyed

September 1998 Anjin, Belo Slopes’ agriculture, woodcutting
and huge rainfall

2 deaths; 1 house and farms destroyed;

September 2000 Rom Nwah Earthquakes (intensity IV on Richter
scale) and rainfall

6 deaths; 17 injured; 7 houses destroyed;

June 2001 Limbé Earthquakes (intensity IV on Richter
scale) and rainfall

24 deaths, 2800 homeless, 120 houses destroyed

10 September 2002 Bana-Bafang Slopes’ agriculture and huge rainfall 10 deaths; houses destroyed

20 July2003 Magha’a and
Atsuela

Slopes’ agriculture, breeding,
woodcutting and huge rainfall

22 deaths; 50 deaths cattle; houses; roads and farms
destroyed.

August 2003 Bafou Rainfall 2 deaths; 1 house destroyed

August 2003 Wabane Huge rainfall and flooding 1 death

27 September 2007 Abuh Rainfall Plantations destroyed

September 2008 Fondonera Huge rainfall Farms destroyed

October 2008 Moumé-Bafang Huge rainfall 1 death; 103 homeless; 12 houses and 1 road
destroyed;

October 2009 Bamenda-Akum Huge rainfall causing collapse and
blocks subsidence

Main road destroyed with several days of traffic
interruption
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Y ¼ 1 if PDF2019≤0:29
0 Otherwise

�

Then the probability of rainfall-triggered landslide is cal-
culated by performing the logistic function. This is a clas-
sification algorithm useful for predicting binary outcome
(1/0, Yes/No, True/False) given a set of predictor variables.
It allows computing a multivariate regression between a
binary dependent variable and several independent vari-
ables (Atkinson and Massari, 1998). Multiple logistic re-
gression assumes that observations are independent and
the natural log of the odds ratio and the measurement var-
iables have a linear relationship. The quantitative relation-
ship between the occurrence and its dependency on
several variables can be expressed in the form of a logit
function (10):

P Ev:¼1ð Þ¼ eZEv:

1þeZEv:
ð10Þ

Where PEv, is the probability of an event occurring. In
this case, the event is the daily rainfall threshold to trig-
ger the landslide, and then being equal to 1 in the inter-
val (0, 1). ZEv. is the linear relationship of the event’s

occurrence with independent variables, and it is
expressed as (11):

ZEv:¼b0þb1x1þb2x2þ…bnxn ð11Þ

Where b0 is the intercept of the model, the bi (i = 0,
1, 2, …, n) are the slope coefficients of the logistic re-
gression model, and the xi (i = 0, 1, 2, …, n) are the ex-
planatory variables. Figure 9 synthesizes the processing.
The validation of DRIP model was conducted through a

double accuracy assessment. The first is the confusion
matrix, extracted from the logistic regression’s classifica-
tion table, based on the true positive rate, TPR, defining
the ratio of all positive cases correctly predicted, and the
false positive rate, FPR, expressing the ratio of all negative
cases that are incorrectly predicted to be positive, under a
defined threshold value. They are formulated as (12 & 13):

i) TPR¼TP= TPþFNð Þ ð12Þ

ii) FPR¼FP= FPþTNð Þ ð13Þ

The second is the positive predictive value, PPV, and
the negative predictive value, NPV, that are respectively

Table 4 Landslide causes and consequences in Cameroon to the best of recording (Continued)

Month/Year Location Causes Main casualties and losses

October 2010 Bamenda Huge rainfall causing collapse and
blocks subsidence

7 deaths; 7 houses destroyed; 50 homeless;

23 October 2011 Koutaba Bare slopes and huge rainfall 2 deaths;

August, September and October of
every year including 2012 to 2017

Mbo and Ndop
plains

Huge rainfall, slopes’ agriculture and
breeding

Farms and roads destructions

4 & 5 September 2018 Foumban Huge rainfall causing collapse and
blocks subsidence

Houses and roads destroyed

28 & 29 October 2019 Bafoussam Slopes’ agriculture, breeding,
woodcutting and huge rainfall

45 deaths; 300 homeless; dozens of houses destroyed

(Sources – Ayonghe et al., 2002; Tchindjang, 2013; IGMR-Penaye et al., 2018; IGMR-Kankeu & Ntchantcho, 2019)

Fig. 5 Monthly rainfall and rainy days sampled for two zones of the study area in 2019 (Source – Local agro-meteorology offices compilation)

Ngandam Mfondoum et al. Geoenvironmental Disasters            (2021) 8:17 Page 11 of 26



the proportions of positive and negative results were
computed. They are expressed as follows (14 & 15):

i) PPV¼NTP= NTPþNTNð Þ ð14Þ

ii) NPV¼NFP= NFPþNFNð Þ ð15Þ

Modelling rainfall-triggered landslides from the survival
analysis perspective
The method of Caine (1980) was used to model the rela-
tion of rainfall to landslides. This process suggests a gen-
eral threshold that works for time paces between 10min
and 10 days, using the rainfall intensity (I, mm/hr) and
duration (D, hr). Here, the quantity of monthly rainfall
was expressed as a function of the duration (Q, mm/hr) in
the following eq. (16):

I ¼ Q
D

¼ αDβ , Q ¼ αDβ ð16Þ

The values of α and β are defined by using the Cobb-
Douglas regression model in the formulation (17):

log Qð Þ ¼ log αð Þ þ β� log Dð Þ ð17Þ
The second step consists in assessing the spatial vari-

ability of the phenomenon. A spatial autoregressive
model (SAR) enables to decompose the spatial process
for a known site s, based on a random variable Z(s), as
follows (18):

Z sð Þ¼μ sð Þþε sð Þ

μ sð Þ¼ Q sð Þ;LHZ sð Þ
h i

LHS sð Þ ¼ aQb sð Þ⇔μ sð Þ ¼ aQb sð Þ ð18Þ

Where a and b are similarly extracted as for α and β.
Therefore (19):

Z sð Þ ¼ LHZ sð Þ þ ε sð Þ ¼ ααDβb þ ε sð Þ ð19Þ
Where, μ(.) is the spatial characterization and ε(s) is a

centered random variable or error, α and a result from
computing exponential of the intercept, and LHZ(s) inte-
grates the four binary codes corresponding to at least

Fig. 6 Percentage of monthly rainfall between June and October

Fig. 7 Monthly frequency (A) and percentage (B) of landslides between 1954 and 2019
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two conditions met (Table 3) plus the fifth spatially clos-
est code.
For an unknown site, S0, a prediction ẑs0 of Zs0 is inter-

polated using the observations Zs1 , Zs1 ,… Zsn through the
kriging process, expressed such as (20):

ẑs0¼λ1Zs1þλ2Zs2þ…þλnZsn ð20Þ

Then follows the Cox proportional hazards model. Ori-
ginally, this model is used on the medical field to assess
the probability that an individual will experience an event
(for example, death) within a small-time interval, given
that the individual has survived up to the beginning of the
interval (Cox, 1972). The methodology mostly looks at the
probability that given hazards, as the opposite
phenomenon of hazards, may occur for a given actual oc-
currence. Although these models were not originally

oriented spatial, they have been progressively integrated in
geospatial analysis. Recent applications concerned fire
hazard probabilities (Cyr et al., 2007) and factors of a
space colonization (Baudains et al., 2015).
Theoretically, the hazard function for this case study is

expressed such as (21):

λ t∣Zsið Þ ¼ λ0 tð Þ exp β1Zs1 þ β2Zs2 þ…þ βnZsnð Þ
¼ λ0 tð Þ exp β�Zs1−sn

� �
ð21Þ

It gives the hazard function at time t for any unknown
site S0 with covariate vector that are the known sites of
occurrence Zs. There are five known sites that are, one (1)
in Koutaba, three in Foumban (3) and one in Bafoussam
(1). There are also nine verification or unknown sites, dis-
tributed such as two in Koutaba, two in Bafoussam and

Fig. 8 Individual PDF curves and their intersections before (A) and in (B) 2019
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five in Bafoussam. The model is built for the entire period,
1948–2019.

Results and discussions
Landslide Hazard zonation (LHZ) SLIP-based map
The SLIP outcome is a map identifying the landslide zones
of occurrence in eight classes (Fig. 10). The lowest class
value, 0, stands for none condition met and the highest-class
value, 2.25, corresponds to the landslide full conditions. The
study subset is widely exposed to landslides hazard at differ-
ent degrees. The visual patterns appraisal was conducted by
zooming on the three localities of Koutaba, Foumban and
Bafoussam, subject to landslides in October, 2011, Septem-
ber 2018 and October 2019. Generally, at least two condi-
tions are met for the occurrence of the event and the
dominant trend is the combination bare soil & slope inclin-
ation (1.5) conditions.

i) In Koutaba, the occurrence site matches classes
coded 1.5 (Bare soil & Slope inclination), 1.75 (Bare
soil & Soil moisture) and 2.25 (Bare soil & Soil
moisture & Slope inclination). Its two sites of
observations are extended between classes 0 and
1.5.

ii) In Foumban, the landslide sites mostly met two
conditions and are surrounded by the three
conditions, that is from the class coded 1.25 (Soil
moisture & Slope inclination) to the class coded
2.25 (Bare soil & Soil moisture & Slope inclination).

Its two verification sites fall between classes 0 and
2.25, but are not concerned with the class coded
1.75.

iii) In Bafoussam, the landslide site of Gouache
matches the class coded 1.5 (Bare soil & Slope
inclination) and is bounded by classes coded 1.25
(Soil moisture & Slope inclination) and 1.75 (Bare
soil & Soil moisture). Among its five verification
sites, four (2, 3, 4 & 5) are extended between the
classes coded 1.5 and 2.25, while the remaining site
(1) matches the class coded 1 (Bare soil),
surrounded by classes coded 1.75 and 2.25.

Statistically, the area where at least two conditions were
met represents 67.5% of the study area. The largest area is
occupied by the class coded 1.5 (Bare soil & Slope inclin-
ation) with 1709.47 km2 that represents 44% of the research
area. Then follow the classes coded 1.25 (Soil moisture &
Slope inclination; 629.92 km2; 16%), 2.25 (Bare soil & Soil
moisture & Slope inclination; 217.75 km2; 6%) and 1.75 (Bare
soil & Soil moisture; 69.34 km2; 2%). The none condition
class, 0, as well as the single conditions classes coded 0.5
(Slope inclination), 0.75 (Soil moisture) and 1 (Bare soil),
cover 1276.29 km2, representing 32.5% of the study subset
(Fig. 11).

Triggering rainfall DRIP-based thresholds
The highest concentration of rainfall and days of rainfall re-
veals information related to landslides occurrence (Fig. 12).

Fig. 9 Workflow of the DRIP process

Ngandam Mfondoum et al. Geoenvironmental Disasters            (2021) 8:17 Page 14 of 26



Fig. 10 LHZ mapping: A The eight classes of landslide occurrence extent and corresponding codes, B1 & B2 Patterns and sites location in
Foumban, C1 & C2 Patterns and sites location in Koutaba, D1 & D2 Patterns and sites location in Bafoussam
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Fig. 11 Areas (A) and percentages (B) of LHZ per classes

Fig. 12 Spatial distribution of daily rainfall (left) and days of rainfall (right) from June to October

Ngandam Mfondoum et al. Geoenvironmental Disasters            (2021) 8:17 Page 16 of 26



The maps outputted from the rainfall data show how the
three sites, Koutaba, Foumban and Bafoussam match the
main rainfall hot spots. The largest and densified spot is in
the southern area, the second one is in the west and the third
one is in the northeast area. At first sight and according to a
visual comparison with the SLIP algorithm output, it may be
assumed that rainfall concentration, in terms of quantity and
number of days, is related to landslides.
The further analysis of the logistic regression helps

to comfort and discuss this assumption. The predic-
tion model of rainfall-triggered landslide thresholds is
expressed as (22):

f Yð Þ ¼ Expð−ð−17:338þ 20:31�X1:1:−0:0000000013�X1:2:

þ0:0000000003�X1:3: þ 0:0000000002−10�X2:2:

−0:000000002�X2:3:ÞÞ � ð1þ Expð−ð−17:338
þ20:31�X1:1:−0:0000000013�X1:2: þ 0:0000000003�X1:3:

þ0:0000000002−10�X2:2:−0:000000002�X2:3:ÞÞÞ
ð22Þ

As a reminder, X1 represents the rainfall frequency
and X2 stands for the days of rainfall frequency between

Table 5 Different probabilities expressed by the prediction model

Probability f(Y) ≤ 0.29

Ranges Expression Landslide
occurrence

f ðX1Þ; f ðX2Þ≤ 0:229 Exp(−(−17.34 + 20.31))/1 + exp (−(−17.34 + 20.31)) 4.88%

0:229< f ðX1Þ; f ðX2Þ≤ 0:394 Exp(−(−17.34 − 0.0000000013 + 0.0000000002))/(1 + exp (−(−17.34 − 0.0000000013 + 0.0000000002))) 99.99%

f ðX1Þ; f ðX2Þ≥ 0:394 Exp(−(−17.34 + 0.0000000003 − 0.000000002))/(1 + exp (−(−17.34 + 0.0000000003 − 0.000000002))) 99.99%

f ðX1Þ≤ 0:229,
0:229< f ðX2Þ≤ 0:394

Exp(−(−17.34 + 20.31 + 0.0000000002))/(1 + exp (−(−17.34 + 20.31 + 0.0000000002))) 4.88%

f ðX1Þ≤ 0:229,
f ðX2Þ>0:394

Exp(−(−17.34 + 20.31 − 0.000000002))/(1 + exp (−(−17.34 + 20.31 − 0.000000002))) 4.88%

0:229< f ðX1Þ≤ 0:394,
f ðX2Þ≤ 0:229

Exp(−(−17.34 + 0.0000000013))/(1 + + exp (−(−17.34 + 0.0000000013))) 99.99%

f ðX2Þ≤ 0:229,
f ðX1Þ>0:394

Exp(−(−17.338 + 0.0000000002))/(1 + exp (−(−17.338 + 0.0000000002))) 99.99%

0:229< f ðX1Þ≤ 0:394,
f ðX2Þ>0:394

Exp(−(−17.34 − 0.0000000013 + 0.000000002))/(1 + exp (−(−17.34 − 0.0000000013 + 0.000000002))) 99.99%

0:229< f ðX2Þ≤ 0:394,
f ðX1Þ>0:394

Exp(−(−17.34 + 0.0000000002 + 0.00000000035))/(1 + exp (−(−17.34 + 0.0000000002 + 0.00000000035))) 99.99%

Table 6 Equations of ANOVA regression for the observed sites

Observed sites (Period) Model Values

S1-Njiloum1 (1948–2018) 0.03004 ∗ 18119.1 ∗ 6072.012 ∗ (−0.488) 1.0073

S2-Njiloum2 (1948–2018) 0.03004 ∗ 33858 ∗ 6072.012 ∗ (−0.2612) 35.0509529712193

S3-Njitout (1948–2018) 0.03004 ∗ 158816.73 ∗ 6072.012 ∗ (−0.394) 29.6676110831837

S4-Koutaba (1948–2018) 0.0305 ∗ 1812 ∗ 6101.694 ∗ (−0.493) 0.260802712270763

S5-Bafoussam (1948–2018) 0.0233 ∗ 13589.52 ∗ 6131.76 ∗ (−0.3463) 6.33339140678556

Mean 1948–2018 14.4640116346919

S1-Njiloum1 (2019) 18255.1 ∗ 55603585 ∗ 6141.1724 ∗ (−0.886) 1,878,436,394.94023

S2-Njiloum2 (2019) 18255.1 ∗ 58869398061659300 ∗ 6141.1724 ∗ (−1.473) 16,453,557,989,053,200

S3-Njitout (2019) 18255.04 ∗ 309547810768.523 ∗ 6141.1724 ∗ (−1.13) 1,143,698,653,144.39

S4- Koutaba (2019) 18255.04 ∗ 55603585 ∗ 6161.63 ∗ (−0.903) 79,529,751.9255277

S5-Bafoussam (2019) 13691.28 ∗ 41702688.98 ∗ 6181.94 ∗ (−0.646) 181,480,394.584158

Mean 2019 3,290,940,765,430,580
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1948 and 2018, while Y is their intersection for the year
2019 (Table 5).
There are six ranges of probability over nine (6/9)

that are rainfall-triggered landslides event, Y. The
landslide probability is obvious at 99.99% when
0.229 ≤ X1, X2 < 0.394 or X1,X2 ≥ 0.394. However,
the influence of the rainfall frequency on the land-
slide is higher than the days of rainfall frequency,
such as for X1 ≥ 0.229 and X1 ≥ 0.394, the probability
remains 99.99%, no matter if the rainfall frequency
X2 < 0.229. Reversely, for all rainfall frequency X1 ≤
0.229, the probability of landslide occurrence is very
low, 4.88%, no matter if for the days of rainfall

frequency, 0.229 < X2 ≤ 0.394 or X2 ≥ 0.394. Conse-
quently, the frequency of rainfall alone is able to
trigger a landslide event in the study area once the
minimum threshold of 0.229 is reached. Therefore,
the adapted DRIP approach shows suitability to dis-
tinguish landslide and no-landslide for one common
frequency.

Lifetime of sites to rainfall-triggered landslide
Applying the Cobbs-Douglas formula, the following
models were withdrawn from the analysis of variance,
ANOVA, regressions on the five sites of landslides oc-
currence (Table 6).
These values were normalized by dividing each site

Si value by the mean of all values for each period.
Then after, the most recurrent interval between LHZ
codes, 0.25, was used to increment or decrement the
normalized values towards the closest map class. Fur-
ther, the means of the originally normalized values
(Table 7) were computed for each Si, giving 10 values
for the study period 1948–2019. These means vary
between 0.009 (Koutaba) and 3.7 (Njiloum2-Foum-
ban) and served as coefficients for the kriging process
to predict the verification sites S0 (Table 7). In

Table 7 Normalized and incremented/decremented coefficients

Years Coefficient status Observed sites

S1-Njiloum1 S2-Njiloum2 S3-Njitout S4-Koutaba S5-Bafoussam

1948–2018 Normalized 0.0696 2.423 2.051 0.01803 0.4378

Incremented / Decremented at a pace of 0.25 0.319 2.173 1.801 0.26803 0.6878

0.569 1.923 1.551 0.51803 0.9378

0.819 1.673 1.301 0.76803 1.1878

1.696 1.423 1.051 1.01803 1.4378

2019 Normalized 0.00000057 4.999 0.000347 0.000000024 0.00000006

Incremented / Decremented at a pace of 0.25 0.25000057 4.749 0.250347 0.250000024 0.25000006

0.50000057 4.499 0.500347 0.500000024 0.50000006

0.75000057 4.249 0.750347 0.750000024 0.75000006

1.00000057 3.999 1.000347 1.000000024 1.00000006

μ of normalized values 0.0348 3.7114 1.0257 0.009 0.2189

Table 8 LHZ codes matching and surrounding the verification
sites

Sites Corresponding
LHZ codes

S0 selected codes

Koutaba-Verification 1 0.01*; 0.5; 0.75;
1; 1.5

0.01a; 0.01; 0.5; 0.5;
0.75; 0.75; 1; 1; 1.25;
1.5

Koutaba-Verification 2 0.01; 0.5; 0.75;
1; 1.25

Foumban-Verification 1 0.01; 0.75; 1;
1.25; 1.5

0.01; 0.5; 0.75; 0.75;
1; 1; 1.25; 1.5; 1.5;
2.25

Foumban-Verification 2 0.5; 0.75; 1; 1.5;
2.25

Bafoussam-Verification 1 0.75; 1; 1.25; 1.5;
2.25

0.01; 0.5; 0.5; 0.75; 1;
1; 1.25; 1.5; 1.5; 2.25

Bafoussam-Verification 2 0.01; 0.5; 1; 1.25;
1.5

Bafoussam-Verification 3 0.5; 0.75; 1; 1.5;
2.25

0.01;0.5; 1; 1; 1.25;
1.25; 1.5; 1.75; 2.25;
2.25

Bafoussam-Verification 4 1; 1.25; 1.5; 1.75;
2.25

Bafoussam-Verification 5 0.01; 0.75; 1; 1.25;
2.25

aUsed to replace LHZ code 0, assuming that each class influences the
modelling at some point

Table 9 Observed sites kriging equations and results

Observed sites Model Values

S0-Foumban −2.239 ∗ 0.0348 + 0.026 ∗ 3.711 + 0.485
∗ 1.026 + 0.001 ∗ 0.009 + 2.468 ∗ 0.219

1.06

S0-Koutaba 1.863 ∗ 0.0348 − 0.134 ∗ 3.711 − 0.59
∗ 1.026 + 0.001 ∗ 0.009 + 0.825 ∗ 0.219

−0.8571

S0-Bafoussam1 −2.988 ∗ 0.0348 + 0.104 ∗ 3.711 + 1.321
∗ 1.026 + 0.001 ∗ 0.009 + 1.637 ∗ 0.219

1.996

S0-Bafoussam2 −1.507 ∗ 0.0348 + 0.093 ∗ 3.711 + 1.244
∗ 1.026 + 0.001 ∗ 0.009 + 0.333 ∗ 0.219

1.642
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addition, the nine verification sites S0 were coupled
in four dependent variables for the linear regression
with the known sites Si, and their LHZ codes were
ordered in 10 value enhancing the variability, such as:
i)Foumban: verification sites 1 and 2= S0-Foumban;
ii) Koutaba: verification sites 1 and 2= S0-Koutaba;
iii) Bafoussam: verification 1 and 2 = S0-Bafoussam1,
verification 3, 4 and 5= S0-Bafoussam2 (Table 8).
Table 9 gives the four detailed kriging models for
each S0 as well as the results. With respectively 1.99
and 1.642, S0-Bafoussam1 and S0-Bafoussam2 are
the highly exposed sites to a potential rainfall-
triggered landslide. S0-Foumban records the third
value, 1.06, while S0-Koutaba, shows the negative
value − 8571.
Further, based on the landslide occurrence dates, the

following parameters were introduced in the Cox model
computation (Table 10).
The start date corresponds to the first landslide

archived in Cameroon. The end date is the land-
slide occurrence events on the site. The "point date"
is based on the analyst observations of the
phenomenon, and in this case, it was defined accord-
ing to the peak of rainfall starting in August, as well
as on the highest percentage of landslide’s

occurrence that are 22% in August, 45% in Septem-
ber and 21% in October (Table 2). The elapsed time
was estimated in days rounded to the upper bound
unit. The "censored status" is 1 for the failure to sur-
vive, that is the occurrence after the "point date"
and 0 for success, i.e., the success or no-failure to
survive before the "point date".
From the results presented in Fig. 13a, the survival

probability of a site to rainfall-triggered landslide under
23,300 days of age was ≈0.68 (68%), and the site S4-
Koutaba is the only concerned in this category. Between
approximately 23,370 days and 23,700 days of ages, this
probability was ≈0.38 (38%). The three sites S1-Nji-
loum1, S2-Njiloum2 and S3-Njitout in Foumban, be-
long to this interval. Above 23,700 days of age, the
survival probability keeps decreasing between ≈0.38 and
≈0.1 (10%). The only site that matches this category is
S5-Gouache in Bafoussam.
Inversely, and based on Fig. 13b, the rainfall-

triggered landslides hazard increases with time. Tech-
nically then, the exposure of S5-Bafoussam to that
hazard is higher than the other sites, while the lowest
exposure is at S4- Koutaba. The hazard ratio is
1.474 ≈ 1.5. (Table 11), corresponding to the time-to-
event, meaning that at any time, one-and-half as
many sites of occurrence (i.e., 1.5 ∗ 5 = 7.5) are ex-
posed to landslides.
The results above commented and their beta coeffi-

cients, β = 0.388, were used to elaborate Cox

Table 10 The Cox model parameters
Start date End

date
Point
date

Time
(days)

Censored
status

Covariate

S1-Njiloum1 1/1/1954 4/9/2018 1/8/2018 23,379 1 0.0348

S2-Njiloum2 1/1/1954 4/9/2018 1/8/2018 23,379 1 3.7114

S3-Njitout 1/1/1954 5/9/2018 1/8/2018 23,380 1 1.0257

S4-Koutaba 1/1/1954 23/10/2011 1/8/2018 20,871 0 0.009

S5-Gouache 1/1/1954 29/9/2019 1/8/2018 23,799 1 0.2189

Fig. 13 Survival probability (A) and hazard exposure (B) of the five landslide occurrence sites

Table 11 Summary statistics

Total
observed

Total
failed

Total
censored

Time
steps

Covariate
coefficient (β)

Hazard
ratio

5 4 1 4 0.388 1.474
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proportional hazards model for the four unknown sites,
S0. Their hazard ratio instantaneous risk was computed
using the models detailed in Table 12 below.
The highest ratio is observed at S0-Bafoussam1 with

1.47 that is almost as same as the hazard ratio. The
other sites in the decreasing order are S0-Bafoussam2,
S0-Foumban and S0-Koutaba, with respectively 1.28,
1.02 and 0.49.

Accuracies assessment and caveats
The two algorithms of SLIP and DRIP such as originally
developed (Fayne et al., 2019) and adapted in this re-
search connect landslides occurrence and huge rainfall.
The interest has been to adjust the process to gaps in
data, precisely the discontinuity among satellite images
due to cloud cover and the unavailability of rainfall data
at an hourly pace.
According to the SLIP processing, the highly ex-

posed class to landslide occurrence meets the three
conditions of bare soil, soil moisture and slope in-
clination thresholds, i.e., the LHZ code 2.25. Based
on their location, five landslide sites match or are
closely surrounded by this class, confirming the effi-
ciency of the mapping method. In addition, five out
of nine (5/9) verification sites support this statement,
and give with the five previous a total match up to
71% (10/14 sites). Nonetheless, these accuracies are
affected by the satellite images season, because the
areas calculated may be x time more or less referring
to the appending processing applied to approximate
vegetation versus no-vegetation area between the dry
and the rainy season (Appendix 2). In addition, the
built-up extent and material can introduce biases es-
pecially when computing soil spectral indices

(Ngandam et al., 2019). For instance, cities as
Bafoussam and Foumban are characterized by their
mi-rural/mid-urban patterns that include many
houses in raw material such as earthen bricks and
straw roofs, or unpaved dusty/muddy roads and
tracks. Therefore, their reflectance may create mixed-
pixel in the INDVI result, because they usually re-
flect enough in the red and SWIR wavelengths of
Landsat 8 images just as the landslide-affected areas
(Ngandam et al., 2019). Further, the DRIP modelling
accuracy assessment holds in two approaches. Taking
the confusion matrix extracted from the logistic
modelling classification table, and with 50 observa-
tions of rainfall in the 10 zones, the TPR or sensitiv-
ity is up to 100% (39/39), while the FPR or
specificity is 82% (Table 13). Both give an overall ac-
curacy of 96%, corresponding to the rate of rainfall
and days of rainfall frequencies equal or beyond
thresholds triggering the landslides.
In addition, from the data of Table 13 above, the

PPV is 95% (39/41) while reversely, the NPV is 5%
(2/41). These are high accuracies of the efficiency of
a post-landslide analysis in relation with a daily rain-
fall, to potentially know a date of occurrence. How-
ever, the unavailability of hourly rainfall to proceed to
a timing limits to properly correlate the two data
frequency.
On the last step dedicated to the survival analysis

of sites, the goal was to predict and correlate daily
rainfall, days of rainfall and the magnitude of the
landslide in terms of speed of occurrence, to
complete the status mapping and timely retrospective
of the original algorithms. Based on the rainfall inten-
sity deducted on a daily pace, the processing was able
to perform a lifetime analysis, departing from the first
event archived in Cameroon on 1/1/1954, for the
known and unknown sites. The survival probability of
affected sites decreases with time, while the hazard of
rainfall-triggered landslide increases. The unknown
sites Cox’s proportional hazards model can then be
applied to the other sites of Cameroon, where rainfall
data are available and landslides historic are archived.
However, the huge rainfall of 81 mm in approximately
36 h preceding the landslide of Bafoussam-Gouache
was not especially integrated in the processing, what
raises the interrogation on the accurate timing as well
as the rainfall intensity threshold to be used in the
model.

Conclusion
The goal of this paper was to propose a derivative
SLIP/DRIP procedure, adapted to countries and
world’s areas facing issues such as, satellite images
important and a permanent cloud cover, poor spatial

Table 12 Hazard ratios instantaneous risk models for the
observed sites

Observed sites Model Values

S0-Foumban exp(0.388 ∗ 1.06)/ exp (0.388 ∗ 1) 1.02

S0-Koutaba exp(0.388 ∗ (−0.8571)/ exp (0.388 ∗ 1) 0.49

S0-Bafoussam1 exp(0.388 ∗ 1.996)/ exp (0.388 ∗ 1) 1.47

S0-Bafoussam2 exp(0.388 ∗ 1.642)/ exp (0.388 ∗ 1) 1.28

Table 13 Classification table for the training sample – variable
Y1
Calculated 0 1 Total %Correct

Observed

0 9 2 11 81.82

1 0 39 39 100

Total 9 41 50 96
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and temporal records of rainfall data for hourly or
daily paces, or the lack of landslide inventories, all
that impede the implementation of the robust SLIP/
DRIP algorithms. Clearly thus, the proposed method-
ology did not pretend to substitute the standardized
SLIP and DRIP algorithms. This approach is just an-
other entry to these two algorithms, as an alternative
to data voids, with the complementary step of

survival analysis. To sum up, the ante and post land-
slide status of the affected areas approximately
mapped, the rainfall threshold that triggers the land-
slide were modeled/estimated, and warning thresh-
olds for a potential upcoming landslide were
predicted for unknown sites based on survival prob-
ability and/or hazard exposure of known ones.
Nevertheless, and logically, the accuracies of the out-
comes suffered drawbacks and caveats, related to the
accuracy of the areas affected by landslide, an effi-
ciency of monitoring exposed areas in a window of
16 days with free Landsat 8 images, and the exact
timing of the landslide occurrence in relation with
the triggering rainfall.

Appendix 2
Image classification and NDVI computation for LULC
extent assessment
Because all the cloud-free satellite images of the study
area are only available for the dry season, there is a need
of matching the land use land cover (LULC) areas with
the rainy season when landslides always take place.
Then, an image of the rainy season was used from 23
June 2019, and a cloud-free subset was extracted on the
natural land covers area, i.e., vegetation and soil, and a
supervised classification was performed for each image.
Their average overall accuracy is 92% and the average
kappa coefficient is 0.89. An image difference was then
performed with the newest image (dry season) classifica-
tion of the same year. The transformational technique
that produces a change image from which a change/no

Appendix 1
Table 14 Information on Landsat 8 images used (https://
earthexplorer.usgs.gov)

Year Months IDs Center time

2014 March “LC81860562014080LGN01” 09:32:50

December “LC81860562014352LGN01” 09:32:33

2015 January “LC81860562015019LGN01” 09:32:25

December “LC81860562015355LGN01” 09:32:34

2016 January “LC81860562016006LGN02” 09:32:30

December “LC81860562016358LGN03” 09:32:40

2017 February “LC81860562017056LGN00” 09:32:19

December “LC81860562017360LGN00” 09:32:37

2018 January “LC81860562018027LGN00” 09:32:22

December “LC81860562018347LGN00” 09:32:18

2019 January “LC81860562019014LGN00” 09:32:16

June “LC81860562019174LGN00” 09:32:18

December “LC81860562019350LGN00” 09:32:43

Fig. 14 Subsets of land cover extent approximation

Ngandam Mfondoum et al. Geoenvironmental Disasters            (2021) 8:17 Page 21 of 26

https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov


change threshold must be established was used. It is
expressed as a symmetric relative difference in the fol-
lowing equation (Erdas, 2008):

Va ¼ T2−T1

T1j j þ T2−T1

T2j j ð23Þ

Where Va is the new vegetation area and T is the time
season image. It was noticed that in June, the 337,845 ha
of the classification subset were occupied by the vegeta-
tion up to 61% (205,295 ha) versus 39% (132,550 ha) for

soils, while in December, these percentages switch to
46% (155,260 ha) for vegetation and 54% (182,587 ha)
for soils. To confirm the objects extraction and the
trends above, the Normalized Difference Vegetation
Index (NDVI) was computed for the two images
(Fig. 14).
Statistics give 69% (233,113 ha) for vegetation and 31%

(104,732 ha) for soil in June, versus 47% (158,787 ha) for
vegetation and 53% (179,058 ha) for soil in December
(Fig. 15). The average percentages are 65% for vegetation
and 35% for soils in June, versus 46.5% for vegetation

Fig. 15 Land Use Land Cover (LULC) – comparison for the classification and the NDVI

Appendix 3

Fig. 16 Regression of MNMDI and Hydrothermal principal components bands
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and 53.5% for soils in December. The ratios of the rainy
season over the dry season areas were computed, show-
ing that the rainy season vegetation area is about 1.4
times bigger than in dry season. Assuming that the aver-
age percentages could have the same influence on the
classification process, the ratio of vegetation extent
(65%) over the classification accuracy (92%) was calcu-
lated. The result obtained, i.e., 0.598 ≈ 0.6, was summed
with the previous value, 1.4, as the best vegetation ex-
tent approximation for the rainy season, i.e., 2 times the
vegetation area of the dry season’s area. The ArcGISPro
software expand function tool is useful for this purpose.
In its principle, the class value targeted is multiplied by
an x factor (2 here) to approximate the area as needed.
The algorithm is written as:

Expand in raster;number cells; zone valuesð Þ
ð24Þ

With in_raster representing the reclassified raster
image, number_cells being the x factor and zone_values
standing for the class to be expanded.
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