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Abstract 

Introduction  After flood occurrences, remote sensing images provide crucial information formapping flood inunda-
tion extent. Optical satellite images can be utilized to generate flooded area maps when the flooded areas are free 
from clouds.

Materials and Methods  In this study flooded area was calculated using a variety of water indices and classification 
algorithms, calculated on Landsat data. Pre-flood, during flood, and post-flood satellite data were collected for in-
depth flood investigation. The delineation of inundated areas was done using the Normalized Difference Water Index 
(NDWI), Modified Normalized Difference Water Index (MNDWI), and Water Ratio Index (WRI). In order to detect and 
compare flooded areas with water indices, the supervised maximum likelihood algorithm was also used for land use 
and land cover mapping.

Results  The results of the investigation allowed for a flooded area and recession. The analysis revealed that the 
flooded area covered about 68% of the study area, and remained standing for seven weeks. We used the misclassi-
fied areas approach, as determined, using the classified results, to improve the results of the flooded areas, generated 
through the use of each of the 3 water indices. The result showed that the MNDWI images showed better accuracy of 
above 90%, which reflects the reliability of the results.

Conclusion  This proposed remote sensing (RS) technique provides a basis for the identification of inundated areas 
with less misclassified areas, which enable an emergency response to be targeted, for newly flooded areas. Thus, the 
present study provides a novel rapid flood mapping perspective and provides a considerable contribution to flood 
monitoring.
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Introduction
Floodsare the most prevalent natural disaster in the 
world, having a tremendous potential for devasta-
tion (Kundzewicz et  al. 2014; Arnell and Gosling 2016). 
In recent decades, the frequent occurences of several 
floods have had severe impacts on the humans, and key 
resources around the world (Uddin et al. 2019; Sivanpil-
lai et  al. 2021). Although this devastating flood disaster 
cannot be completely avoided, the consequences can 
be mitigated by using efficient rapid flood risk reduc-
tion measures that incorporate remote sensing (RS). RS 
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technology is the most cost-effective method providing 
rich information of all phases of flood disaster, which 
may be utilised for instant rapid flood mapping (RFM) 
(Zhang et al. 2015; Khalid et al. 2018). There are burgeon-
ing studies where RFM has been applied for identifying 
flooded areas and providing reliable information for early 
flood response (Islam et al. 2010; Haq et al. 2012). These 
actions require up-to-date satellite data for flood map-
ping, as many floods last for several days (Refice et  al. 
2014; Munasinghe et  al. 2018; Sajjad et  al. 2020). Previ-
ous studies have analyzed the potentials of various RS 
techniques for accurate flood mapping (Gao et al. 2018; 
Uddin et al. 2019; Sivanpillai et al. 2021). Optical RS data, 
which provide up-to-date information with a high tem-
poral resolution for public users, has been widely used 
in the detection of flooded areas during the flood event 
(Alphan et al. 2009; Roni et al. 2014; Goffi et al. 2020). On 
the other hand, the presence of clouds, lowers the avail-
ability of optical RS images during flooding, which has 
an impact on overall flood mapping. Synthetic Aperture 
Radar (SAR) images, which can pierce clouds and obtain 
images in all weather situations, are commonly employed 
for flood mapping under these circumstances (Joyce et al. 
2009; Manavalan 2017; AlFaisal et al. 2018).

SAR data are normally very expensive and difficult to 
process (Boni et  al. 2016). Furthermore, SAR satellite 
provides free data in some regions through certain agen-
cies, such as Sentinel Asia, and global charter on flood 
disasters (Kaku et al. 2015). With the availability of Sen-
tinel-1 data, some studies have utilized it for flood map-
ping (Rahman and Thakur 2017; Amitrano et  al. 2018; 
Borah et al. 2018; Uddin et al. 2019).

In our study, however, flooded areas were cloud 
free,because the causal rainfall event happened in the 
upper Chenab river roughly 10  days before the major 
flood water reached the selected Chenab floodplain. 
Cloud-free optical images have been found to be excel-
lent for RFM in previous researches (Revilla-Romero 
et al. 2015; Rosser et al. 2017; Sajjad et al. 2019).

The optical RS has provided a wide source of reliable 
data, which is significant for a detailed RFM. Further-
more, the frequency of optical satellites collecting images 
has possessed a high possibility of obtaining more post-
flood images (Notti et al. 2018; Giordan et al. 2018). Thus, 
the flood maps can be updated more frequently using 
multispectral data. The Landsat-8 images are the primary 
source of multispectral data used in this work (Sanyal 
and Lu 2004; Wulder et al. 2012). The study area in our 
case is situated on two neighbouring Landsat satellite 
Paths (150 and 151), allowing us to acquire images with 
an 8-day temporal resolution.This enabled us to carry out 
in-depth RFM in the study area.

In most situations, RFM is based on water indi-
ces that use band ratios generated from satellite spec-
tral data and threshold values applied to the ratios to 
extract flooded areas (Revilla-Romero et  al.2015; Saj-
jad et  al. 2021). RS-based water indices are utilized for 
the extraction of flooded areas, including the Normal-
ized Difference Water Index (NDWI) (McFeeters 1996), 
which uses reflected NIR and Green bands for water area 
assessment, and the Modified NDWI (MNDWI) (Xu 
2006), which uses the SWIR band and the Green band to 
enhance water areas while removing built-up and vegeta-
tion area noise. Although NDWI results occasionally mix 
with built-up, it does give better flood inundation results 
in vegetation areas, in some circumstances. According to 
Rokni et al. (2014), it performed better than the MNDWI 
in Lake Urmia in Iran, which has no built-up areas. In 
the NDWI, water features have positive values, whereas 
vegetations and soil have negative values. However, when 
the MNDWI is used in water regions with built-up, the 
MNDWI image shows positive values. Thus, it becomes 
apparent that both the indices have a limitation for flood 
mapping as they both rely on environment i.e., whether-
built up or vegetation is present in the study site. In the 
present study, mixed land cover dominates most river 
bank environments where the built-up area can be seen 
along with cultivated land, which means that relying on 
merely one type of index, may not be suitable for accu-
rate RFM.

Therefore, the main goal of the present study is to 
delineate rapid flooded areas using suitable water indi-
ces. Results from the water indices, propose a step-wise 
approach for accurately performing RFM, in an environ-
ment where built-up and vegetation land uses are mixed. 
Such an approach gives an insight to the flood situation in 
this significant riverine floodplain with minimum inclu-
sion of other non-water classes. Also, in case of flood 
disaster occurrence, such an insight can assist in proper 
decision making for emergency flood management.

Materials and methods
Study area
The research is being carried out in the Chenab Basin, 
Pakistan which stretches from 70°41′13′′ to 71°37′59′′ 
E and 29°6′0′′ to 30°31′34′′ N (Fig.  1). Every year, riv-
erine floods occur in this fertile flood-prone Chenab 
Basin of Pakistan. We have chosen a 120-km stretch of 
the Chenab River as the focus of our research (Fig.  1). 
Its spatial extent is between Head trimmu in north to 
Head Panjnad in the south. Chenab river is 272 km long 
(within Pakistan boundary), and its total catchment area 
is 41656 km2. Amongst these 41,656 km2, 27,195 km2 of 
the catchment area, lies in the mountainous region, that 
is located upstream Head Marala, and this area remains 
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a frequent victim of flash floods, whereas, the river-
ine floods, remain a characteristic of the low lying areas 
(Mahmood and Rani 2022). The study area has an arid 
type of climate with hot and dry summers while cold 
and dry winters.The average annual rainfall is 157  mm, 
with July recording the highest total of 50 milimeters and 
October recording the lowest total of 2 milimeter (PMD 
2014). The locals are engaged with agriculture as the pri-
mary economic activity of this region. Riverine floods 
have often caused devastation in the study region, but 
the 2014 flood, which triggered more human life losses 
and economic damages than any other flood since 1992, 
which was the deadliest in the flood history of this region.
The study area has characterized with a flat, alluvial plain 

Fig. 1  The Chenab River and the study area’s location

Table 1  Characteristics of Landsat 8 (OLI) images used in the 
present study

Landsat Paths Rows Dates Flood stages

151 39 08-09-2014 Pre flood

150 39,40 17-09-2014 During flood

151 39 24-09-2014 During flood

150 39,40 03-10-2014 During flood

151 39 10-10-2014 Post flood

150 39,40 19-10-2014 Post flood

151 39 26-10-2014 Post flood

151 39 11-11-2014 Post flood
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productive land, with orchards and deserts on all sides 
(FFCI 2014).

Materials
The Landsat 8 images were obtained from the US Geo-
logical Survey’s database. We used eight Landsat images 
taken between September 8th and November 11th, 2014. 
(Table  1). Spatial ground truth datasets were also col-
lected through Google Earth (GE) platform, which were 
utilised to validate land use and land cover (LULC) clas-
sification (Hu et al.2013). In addition, GE images of flood 
stages were also obtained (with acquisition dates corre-
sponding to the Landsat-8 images) for comparison with 
Landsat-based LULC classification and flood mapping. 
The closest available pre-flood GE image with used Land-
sat image was taken on 4th August 2014, during-flood 
images on 18th September 2014, 1st October 2014 and 
the post-flood image on 11th November 2014.

Methods
To prepare the satellite images for further processing, 
radiometric calibration, atmospheric correction, and 
layer mosaicking were used as pre-processing proce-
dures. To convert satellite images to satellite radiance, the 
Landsat radiometric calibration method in ENVI 4.8 was 
used to perform radiometric calibration and atmospheric 
correction (Khalid et  al.2018). Every Landsat image’s 
digital number values were transformed to reflectance 
after being converted to satellite radiance (Chavez 1996). 
Layer stacking and mosaicking were performed using the 
spatial analysttool in Arc GIS. The final Landsat images 
were used for LULC mapping based on ML classifica-
tion in order to estimate flooded areas extent using water 
indices, as shown in Fig. 2. Classes of water, vegetation, 
built-up, sand, and barren areas were identified. A total 
of 120 GE training points were obtained to facilitate the 
ML classification for LULC mapping. These points were 
digitized and imported in the Arc GIS 10.5, for further 
mapping. Later, the LULC map was converted into vector 
shapefile format and used for spatial overlay technique. 
This enables us to spatially intersect all land uses in order 
to compare classified map results to flood inundation 
outcomes in a consistent manner.

We also used the following water indices; MNDWI, 
NDWI and WRI, to extract the flood water areas. The 
NDWI index is effective for detecting flood water 
(McFeeters 1996), as it makes use of the robustness in 
water absorption and reflection of vegetation in Near 
infra-red (NIR) bands and high reflection of water spec-
tral signature in the Green band (McFeeters 1996). Green 
(band 3) and NIR (band 5) are used to determine the 
NDWI, as shown in Eq. (1):

The ability of this index to distinguish between water 
and vegetation is very strong. However, if there is a built-
up environment in water areas, its efficiency is lowered. 
Therefore, Xu (2006) proposed the MNDWI index to 
overcome this limitation, which effectively distinguishes 
water from built-up areas. Green (band 3) and Shortwave 
infrared (SWIR) (band 6) are used to calculate the index, 
as shown in Eq. (2):

Shen and Li (2010) define WRI as the ratio of total 
spectral reflectance in the Green (band 3) and Red (band 
4) to NIR (band 5) and SWIR (band 6) wavelengths (band 
6). As indicated in Eq. (3), the ratio is calculated:

In the case of flood map generation, however, the 
manual threshold-based technique appears to be accu-
rate. This method often identifies consistent water areas 
(Manjusree et  al.2012). Similar to the study by Acharya 
et  al. (2018), this present study performedflood map-
ping technique, in which each index was given manually 
selected threshold values from − 1 to + 1 for distinguish-
ing the results of the analysis for each image into two 
categories: water and non-water pixels. Furthermore, 
the suitable manual threshold value for getting the high 
overall accuracy has been obtained by applying the trial-
and-error method and comparing it to a reference classi-
fied map and visual interpretation. For comparison with 
water indices, we compared index-based flooded areas, 
as an area that experienced flooding. On during flood 
classified images, MNDWI, NDWI and WRI indices were 
applied to present the area under flood. The classified 
image was utilized as a reference image. Afterwrds, spa-
tial overlay change detection analysis was applied to eval-
uate misclassified water areas, calculated by the indices.

Inundation maps and classsified images validation
The validation of flood inundation maps and LULC clas-
sified image was performed using the GE platform. The 
Arc GIS spatial analyst’s random sample points tool was 
used to obtain random sample points on the classified 
image. After that, the points were transformed to a kml 
format and overlaid on the GE platform. Visual inter-
pretation and native knowledge were used to assess the 
accuracy value of these 150 points on a classified image. 

(1)NDWI =
Green(band3)−NIR(band5)

Green(band3)+NIR9band5)

(2)MNDWI =
Green(band3)− SWIR(band6)

Green(band3)+ SWIR(band6)

(3)WRI =
Green(band3)+ RED(band4)

NIR(band5)+ SWIR(band6)
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A total of 30 Arc GIS random points were applied for 
each class, including water, vegetation, built up, sand and 
barren areas on classified image.

Similarly, the validation of inundation maps was also 
assessed through better resolution GE digitized points. 
As such, the during flood 17th September inundation 

Fig. 2  Methodological outline for RFM using Landsat-8 flood images
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maps were validated, utilizing corresponding 18th Sep-
tember during flood GE image based digitized points. 
Likewise, the validation of remaining flood inundation 
maps was also assessed based on GE points. The water/
not water classifications of these points were observed 
for accuracy assessment. If a reference point was inter-
preted as ‘non-water’ in the pre-flood stage but as ‘water’ 
in the post-flood stage, it was evaluated as a flooded 
class. Reference data was interpreted as ‘non-water’ class 
if they were interpreted as ‘non-water’ in pre-flood and 
‘non-water’ in post-flood stages. The accuracy of flood 
maps and validation of water and non-water classes 
were assessed using a total of 800 GE digitized points, 

100 points for each image. Furthermore, we used the 
Confusion matrix for the final accuracy results through 
comparison of the RFM image points with GE source 
points. The resultant flood maps were used to calculate 
overall, producer, and user accuracies. Overall accuracy 
is assessed through the ratio of corrected points of final 
images with the total number of GE reference points. 
User accuracy is obtained by separating corrected points 
of RFM with the total validation points of a specific class, 
whereas producer accuracy is calculated by comput-
ing the corrected RFM points for each class (Sajjad et al. 
2020; Sivanpillai et  al. 2021). The Kappa coefficient was 
also applied to confirm the agreement, as positive or 

Table 2  Overall accuracy assessment and Kappa coefficient values of RFM produced by used water indices

Landsat-8 images Overall accuracy Kappa values

MNDWI NDWI WRI MNDWI NDWI WRI

08/09/2014 0.91 0.89 0.87 0.86 0.80 0.77

17/09/2014 0.93 0.88 0.85 0.87 0.77 0.71

24/09/2014 0.97 0.90 0.78 0.93 0.81 0.63

03/10/2014 0.95 0.88 0.89 0.90 0.77 0.78

10/10/2014 0.90 0.87 0.87 0.80 0.78 0.76

19/10/2014 0.95 0.90 0.79 0.89 0.83 0.65

26/10/2014 0.90 0.87 0.84 0.80 0.76 0.70

11/11/2014 0.96 0.92 0.88 0.91 0.85 0.77

Table3  User and producer accuracy of RFM generated from used water indices

Landsat-8 images Producer accuracy User accuracy

MNDWI NDWI WRI MNDWI NDWI WRI

Water class

08/09/2014 0.91 0.88 0.75 0.93 0.88 0.87

17/09/2014 0.91 0.87 0.76 0.95 0.85 0.91

24/09/2014 0.94 0.86 0.74 0.99 0.92 0.76

03/10/2014 0.91 0.89 0.77 0.95 0.86 0.90

10/10/2014 0.90 0.88 0.81 0.86 0.87 0.91

19/10/2014 0.97 0.90 0.75 0.91 0.92 0.95

26/10/2014 0.90 0.88 0.80 0.87 0.84 0.90

11/11/2014 0.99 0.85 0.81 0.99 0.92 0.91

Non-Water class

08/09/2014 0.93 0.86 0.93 0.92 0.92 0.85

17/09/2014 0.95 0.88 0.93 0.91 0.92 0.79

24/09/2014 0.99 0.91 0.81 0.95 0.88 0.78

03/10/2014 0.96 0.87 0.97 0.94 0.91 0.84

10/10/2014 0.92 0.92 0.91 0.93 0.92 0.86

19/10/2014 0.93 0.93 0.96 0.98 0.91 0.90

26/10/2014 0.91 0.86 0.92 0.91 0.91 0.78

11/11/2014 0.99 0.96 0.93 0.94 0.93 0.84
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negative, between resulted inundation maps with refer-
ence points.

Results
Accuracy assesment
Tables  2 and 3 show the accuracy of the MNDWI, 
NDWI, and WRI indices for all of the images.The 
analysis shows that overall accuracy (OA) and Kappa 
coefficient (KC) values calculated for RFM produced 
from MNDWI resulted images were higher than those 
produced from NDWI and WRI images (Table  2). 
The overall MNDWI derived inundation accuracy of 
six images was above 90%, and only two images had 
values of 90%, as shown in Table  2. Similarly, the KC 
values were higher than 0.80 for six MNDWI derived 
images and for three NDWI images. Furthermore, the 
highest overall accuracy of 97% was obtained by the 
MNDWI index from 17th September image, while 96% 
from 11th November images. Additionally, the highest 
attained overall accuracy of the NDWI index was 92% 
calculated from the 11th November image, while the 
WRI index image of 03rd October, achieved the high-
est accuracy of 89%. The detail about overall accuracy 
and KC values are listed in Table 2.

RFM derived from the NDWI index presented some 
instances when non-flooded water areas were misclas-
sified as flooded areas. On the contrary, WRI index 
results proved that in some areas the flooded areas 
were misidentified as non-flooded areas, resulting 
from the misclassification of various pixels. The flood 
map must have the most accurately identified flooded 
area pixels in order to generate reliable RFM maps for 
emergency flood response and recovery. In our study, 
the producer accuracy (PA) values for the flood water 
class of MNDWI derived images were higher than the 
NDWI and WRI resulted images (Table  3). The PA 
values for the flood water class of all MNDWI images 
were above 90%, which resulted in the maximum cor-
rectly classified flooded areas. In comparison, the PA 
values of all NDWI images were below 90% and all 
WRI images had PA values less than 82%. Similarly, 
the user accuracy (UA) values associated with flood-
water class were also higher in all MNDWI images 
than the NDWI and WRI images. Based on PA and 
UA results, the MNDWI index correctly identified 
relatively more floodwater areas than the NDWI and 
WRI. The PA and UA values for the non-water class 
were also higher in all MNDWI images, than they were 
in NDWI and WRI images. In the two images of 10th 
and 19th October, the NDWI, PA values were similar 
to the MNDWI. Likewise, the UA values associated 
with non-water class were maximum in all MNDWI 
images, compared to NDWI and WRI derived images. 

Based on PA and UA values, results for the non-water 
class were higher in the MNDWI derived images than 
the following corresponding NDWI and WRI derived 
images. Furthermore, it was revealed from this study 
that MNDWI resulted images could be more reliable 
comparatively for generating RFM, in the post-disaster 
phase. Moreover, the NDWI results for some images 
were also acceptable, as they presented good accuracy. 
However, the WRI technique presented poor accuracy 
results and also mixed several floodwater areas into 
non-water areas. Furthermore, the detail about PA and 
UA values of MNDWI, NDWI and WRI are listed in 
Table 3.

Rapid flood mapping using different water indices
The flooded areas of riverine flood-2014 were delineated 
using different water indices to estimate the flood inun-
dated and affected areas in the study area. Figures 3,4 and 
5 depict the flooded areas, with the highest flood peak 
occurring on 17th September and remaining constant 
until 24th September. Later, water from the flooded areas 
regularly receded till 11th November 2014. Figure 7 and 
Table 2 show that rapid flood images obtained from the 
MNDWI index caught flooded areas substantially more 
closely and with high accuracy than NDWI and WRI 
derived images. The analysis revealed that the NDWI 
index resulted images were misclassified as some non-
flooded barren land areas, located in the upper and lower 
part of the study area, were presented as flooded areas in 
all images (Fig. 4). On the other hand, the analysis showed 
that the WRI index could not detect floodwater areas 
accurately, as in some instances, it misclassified flood-
water areas into non-flooded areas, which reduced the 
overall and user accuracy of the final images, as shown in 
Fig. 5 and Tables 2,3. Furthermore, the MNDWI derived 
image reveals that the highest peak-flood inundation of 
17th September covered an area of 1023.4 km2 (Fig.  3), 
while the NDWI index revealed the total of 1035 km2 
area was flooded (Fig. 4) and the WRI revealed the peak 
flood covered an area of 860 km2 (Fig. 5). Similarly, in the 
24th September image, the MNDWI index showed the 
total of 1000 km2 area was under floodwater, whereas the 
NDWI index revealed the floodwater covered an area of 
1005 km2, and the WRI index indicated the total of 820 
km2 area was flooded. Further, the detail of rapid flood 
inundation mapping of all images is shown in Figs. 3,4,5 
and 6. The maps produced by the MNDWI index, deline-
ated flooded areas with high overall accuracy and could 
be used to permit flood emergency response actions in 
order to reduce flood impacts in future flood events.

In all images, the flood inundated areas retreated in 
three stages: In the first stage, a retreat from peak-flood, 
was identified in the South region, from 17th September 
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image to 10th October image. In the second phase, mid-
dle parts had started to experience decrease in standing 
flood water extent, till 26th October, and in the last stage, 
entire flood inundated water areas had retreated, in the 
post-flood 11th November 2014 image (Figs. 3,4,5). Later, 
all images of flood inundation revealed the same pat-
tern of inundation when compared to better GE images 
(Fig. 7).

The RFM images and GE images (Fig. 7) reveal a simi-
lar flooded area spatial and temporal pattern from a pre-
flood to a post-flood instance. The Chenab river was at a 
normal stage in the pre-flood instance, as seen in Fig. 7A. 
However, in the peak-flood 18th September GE image, 
the massive flooded areas along the Chenab river can be 
clearly seen. Similarly, the slight flood water changes are 
observed on the 1st October GE image (Fig.  7C), but it 
also shows the significant flooding in all the surrounding 
vegetation and settlement areas. As revealed in Fig. 7D, 
river Chenab has regained its pre-flood situation, as the 
flooded area was receded and a large quantity of soil 

deposited material was found along the river basin. These 
results are consistent with those, calculated from water 
indices, as shown in Figs. 3, 4 and 5.

The overall accuracy of peak flood classified image was 
92% and the KC accuracy of 88%, as shown in Table  4. 
Water (98%) and barren areas (99%) also had the high-
est user accuracy, as indicated in Table 4. The water class, 
with a 92% accuracy rate, likewise had the highest pro-
ducer accuracy. The accuracy result indicates that the 
during flood classified image is suitable for further com-
parative intersection analysis.

Figure  8 reveals the supervised classified result for 
land use and land cover of during flood (17th September 
2014) image. The result shows that flood caused a mas-
sive inundation which resulted in water class almost cov-
ering 60% of the total area. Whereas, the vegetation and 
built-up areas covered 22.40% and 11.85% respectively. 
The sand class covered only 1.1% and the barren area was 
only 4% of the total area. Hence, the massive floodwater 

Fig. 3  Spatio-temporal flooded areas extent from pre-flood to post-flood using MNDWI index
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caused a large extent of agricultural and built-up areas to 
be flooded and registered damages to the standing crops 
and built-up environment.

In addition, the results of the during flood-2014 
images are compared and intersected, as shown in 
Figs. 8 and 9. In Fig. 8, the classified image and images 
of water indices reveal the accumulated peak flood 
(17th September) extent. The classified image (Fig. 8A) 
shows the accumulated flooded area of 1005.4 km2. 
While, the MNDWI image (Fig. 8B) reveals that a total 
area of 1023.4 km2 was flooded, which shows very lit-
tle difference from the classified image. Furthermore, 
the NDWI result shows that about 1035.1 km2 area 
was under floodwater, which represents the highest 
flood inundated area if compared with other indices. As 
such, The WRI index result reveals that the floodwater 
covered an area of 860.04 km2. Later, the comparative 
analysis reveals that the MNDWI image and classified 

image are somehow supporting each other as shown 
in Figs.  8 and 9. Thus, our results suggest that the 
MNDWI index and Supervised ML classification can 
be used for rapid flood mapping in such areas for early 
flood response and operations. Furthermore, these 
flooded area results, when interpreted with the GE 
images (Fig.  7) obtained for almost the same dates as 
the used Landsat images, also revealed to some extent, 
the similar flood inundated areas, which further vali-
dated our flooded area extent, and also confirming that 
the flood inundation remained for about seven weeks 
and retreated slowly.

Comparing of water indices
We compared the results from supervised classifica-
tion with the indices to determine how accurate are the 
mapped flooded areas when compared to the actual 
flooded area. In Fig.  10A, the supervised classified 
image was used as a reference. Then water indices-based 

Fig. 4  Spatio-temporal flooded areas extent from pre-flood to post-flood using NDWI index
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Fig. 5  Spatio-temporal flooded areas extent from pre-flood to post-flood using WRI index

Fig. 6  Flood inundated areas calculated using MNDWI, NDWI, and WRI indices on different dates
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inundation was overlaid and intersected to show misclas-
sified areas by different water indices from ‘non water’ 
areas as well as ‘water’ areas. The results showed that 
NDWI misclassified barren and built-up areas while WRI 
misclassified vegetation areas and also did not identify 
shallow water areas that led to a lower overall accuracy 
level. The values are given in Table 5. We present the total 
water area extracted by each method in Table 5 and the 
misclassified areas in Table 6. We compare the extracted 
class using the classified image and the misclassified area 
in the water indices, with a supervised classified image as 
a reference point. For built-up areas, only 5.4 km2 were 

misclassified as water areas by MNDWI, compared with 
30.4 and 39.1 km2 for NDWI and WRI, respectively as 
listed in Table 5. The NDWI showed only 19.2 km2 veg-
etation areas are misclassified as water areas, compared 
with 30.4 and 39.1 km2 for MNDWI and WRI indices 
(Table  5). Moreover, the sand areas, about 2 km2 were 
misclassified as water areas by WRI and MNDWI, com-
pared with 18.1 km2for NDWI. Similarly, the MNDWI 
and WRI showed about 1 km2 barren land area was mis-
classified as water area, compared with 60 km2 by NDWI. 
The comparison of results from all three indices shows 
that MNDWI shows a satisfactory result that can be 

Fig. 7  Google Earth Pro 7.3.3.7786 images in the studied area, A 4th August,2014 B 18th September, 2014, C 1st October, 2014, D 11th November, 
2014.Eye alt 11.42 mi

Table 4  Accuracy assessment of during flood Supervised LULC classification

Land use classes During Flood classified image

User Accuracy Producer Accuracy Overall Accuracy Kappa coefficient

Water areas 0.98 0.92 0.92 0.88

Built up areas 0.93 0.86

Vegetation areas 0.94 0.89

Barren area 0.99 0.85

Sand areas 0.95 0.89
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used for flood mapping. The comparison uses the least 
misclassified areas for an index as the class in the final 
water classification. We also used during flood GE (18th 
September) image for comparing water indices results 
(Fig. 10B). Both maps show a similar pattern of compari-
son that NDWI misclassified built-up area as water area, 
in the eastern part. The MNDWI misclassified inun-
dated vegetation as flooded areas in the western part of 
the study area. The WRI also classified more vegetation 
areas as flooded in the eastern and western part. In WRI 
image, the shallow flooded areas are not detected as seen 
in the GE comparison map. Such shallow flooded areas 
are identified as patches of water, in the central part, but 

same areas were not detected as shallow flooded areas in 
WRI image. So the comparison of indices brings robust 
results and helps us to properly identify the most suit-
able water index for rapid flooded areas delineation in 
any area with similar type of mixed agriculture, built up, 
barren and sand landuses. Therefore, this study suggests 
that if the area has mixed Land uses, these indices can be 
used to complement each other in clearing the misclassi-
fied areas. Future researchers can utilized MNDWI index 
in this study area to asses flood extent and formulate 
flood management strategies in term of rescue and relief 
operations. The results also suggested that researcher can 
assess the appropriateness of other water indices while 
using LULC characteristics in order to extract flooded 
areas in other areas of the world. This approach would 
bring a new perspective in the flood monitoring using 
open satellite data awith techniques.

Discussion
Our results reveal that Landsat 8 images, together with 
satellite-derived MNDWI, NDWI and WRI indices per-
mit the detailed flooded areas delineation with reliable 
accuracy. A recent review paper, similarly, analyszed and 
compared different indices used to depict area under 
flood water and regarded MNDWI to be the most suit-
able in terms of its ability to differentiate between turbid 

Fig. 8  A. comparison of Peak-Flood-2014 Inundation using A Supervised Classification B MNDWI C NDWI and D WRI

0 200 400 600 800 1000 1200

Supervised
Classification

MNDWI

NDWI

WRI

Area in km²

Peak-Flood

Fig. 9  A graph showing comparison of Peak-Flood-2014 Inundation 
using SC, MNDWI, NDWI, and WRI indices
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Fig. 10  A. A comparison of Flood inundation using ML Classification, MNDWI, NDWI and WRI indices. B. A comparison of Flood inundation using 
GE, MNDWI, NDWI, and WRI indices
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Fig. 10  continued
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water and mixed pixels (Albertini et  al. 2022). The suit-
able satellite data is critical for RFM. Firstly, the tempo-
ral relationship between satellite characteristics with 
flood incidence is a vital parameter in RFM. For exam-
ple, a low-resolution MODIS satellite (~ 250 m), with its 
rapid revisit time has been utilized during several floods 
to acquire a rapid flood inundation mapping, but with 
uncertain accuracy (Haq et al. 2012; Memon et al. 2015). 
However, due to the lack of during flood open high reso-
lution satellite data, such as Sentinel-1,we employed mul-
tispectral Landsat data with a resolution of 30 m for rapid 
flood mapping (Bhatt et al. 2016; Notti et al. 2018). Alber-
tini et al. (2022), in their recent review article also con-
cluded Landsat to be most commonly used satellite for 
flood water spatial coverage detection. Despite the better 
spatial resolution, Landsat satellite data is constrained 
and cannot obtain geospatial data on time, which usually 
reduces its applicability for RFM (Mahmood et al. 2019; 
Sajjad et  al. 2020). Our study area, however, is located 
between two close Landsat pathways (150 and 151), 
allowing for the capture of high-temporal resolution 
Landsat data (eight days), compared to a 15-day tempo-
ral resolution for an area (Shuhua et al. 2009; Mahmood 
et al. 2021). As a result of the high temporal resolution, 
we were able to conduct a thorough investigation of rapid 
flood mapping. Secondly, the capacity to acquire dur-
ing flood images can be hampered by the presence of 
clouds in the sky. In comparison to optical multispectral 

satellites such as MODIS and Landsat, SAR satellites can 
readily obtain RADAR images in any weather situations 
(Pradhan et al. 2009; Amitrano et al. 2018; Giordan et al. 
2018). In our study, the SAR satellite data was not freely 
available and during the 2014 flood, the study area was 
fully cloud-free because the causal rainfall event occurred 
in upper Chenab (PMD 2014), about 10 days before the 
water reached the study area. Finally, the accuracy of 
mentioned indices to the satellite data was considered in 
order to determine the reliability of RFM. The MNDWI 
index has the highest overall accuracy of 97%, whereas 
the NDWI and WRI images have 92% and 89% overall 
accuracy, respectively (Table 2). The MNDWI index had 
achieved the highest overall accuracy of 97%, and has 
been efficiently used in other studies as well for detect-
ing area under flood water (Guvel et al. 2022), while the 
NDWI and WRI images produce the highest overall 
accuracy of about 92% and 89% respectively (Table  1). 
Furthermore, the flood got reduced in three phases; in 
the first phase, floodwater receded with a rate of 10 km2 
per day, until 10th October. In the second moderate 
phase, the water significantly reduced until 26th Octo-
ber, with a decreasing rate of 17 km2 per day. In the last 
phase, the water was reduced at the rate of 11 km2 per 
day until 11th November, when Chenab river retained 
its before floodwater flow situation. These inundation 
results are endorsed by GE images, which also show the 
similar Spatio-temporal pattern of flood inundation with 
its phases as shown in Fig. 7.

In this study, for the identification of flooded areas, the 
peak flood (17th September) image was used as a refer-
ence, in order to evaluate and compare the result of water 
indices with supervised classified and GE images (Fisher 
et  al. 2016). In our case, the MNDWI index produced 
better results, compared to NDWI and WRI indices, as 
shown in Figs.  8 and 9. Furthermore, the misclassifica-
tion errors in the NDWI index images were revealed, 
due to mixed barren land areas with wet sand, and some 
built-up areas also misclassified as floodwater, mostly 
in the upper part of the study area. Moreover, the WRI 
index images show that the shallow water areas were 
not detected accurately, and wrongly detected some 
vegetation areas as water class, as a result, the low over-
all accuracy was attained, compared with MNDWI and 
NDWI indices (Figs. 8 and 10). The overall result shows 
that the satellite data obtained in the shortwave-Infrared 
(SWIR) wavelength can be useful for detecting flooded 
areas. Therefore, the MNDWI derived images show bet-
ter results, as it slightly misclassifies water areas with 
vegetation class. On the basis of used water indices, the 
peak flood was identified on the 17th of September in the 
study area and then flood water persisted for seven weeks 

Table 5  Total flooded area extracted from different techniques

Total areas extracted by SC and indices

Land use classes SC MNDWI NDWI WRI

Water 1005.4 981.4 907.3 760.1

Built up 203.2 5.4 30.4 39.1

Vegetation 429.15 33.4 19.2 58.2

Sand 19.2 2.1 18.1 1.3

Barren 80.3 1.1 60.1 1.3

Total areas extracted by 
SC and Indices

1682.369 1023.4 1035.1 860

Table 6  Misclassified areas from indices based on the results 
from supervised classification

Misclassified areas in sq.km

MNDWI NDWI WRI

Built up 5.4 30.4 39.1

Vegetation 33.4 19.2 58.2

Sand 2.1 18.1 1.3

Barren 1.1 60.1 1.3
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(Figs. 3, 4 and 5). The field survey also reveals a similar 
flood pattern, duration and recession (Sajjad et al. 2020).

Currently, the ~ 16-day temporal resolution of Land-
sat-8 data is a limiting factor for rapid flood inundation 
mapping for early flood response of an area. But, the 
launch of the Landsat-9 satellite in September 2021 have 
overcome this limitation, as the temporal resolution have 
been reduced to ~ 8 days. But in our case, the study area 
was overlapped by dual Landsat paths which allowed us 
to perform rapid flood mapping with ~ 8  days interval. 
The high temporal resolution can enhance the possibility 
of acquiring cloud-free Landsat satellite data for an area. 
In our study, cloud-free during and post-flood Landsat 
images were acquired as the rainfall phenomenon hap-
pened in upper regions. To overcome this issue, future 
research can collect and combine RS images from differ-
ent satellites such as optical Landsat for pre-flood with 
SAR for post-flood. Combining RS images from different 
satellites will pose extra challenges due to contrasts in 
their informational characteristics. The spatial and spec-
tral characteristics of each image could be diverse. But, 
combining images from distinctive satellite programs 
would enhance the chances of getting cloud-free during 
and post-flood images and provide up-graded informa-
tion to flood response organizations. Furthermore, the 
opportunities of RADAR and optical datasets combina-
tion will enhance as frequent active sensors have been 
launched by many organisations. This will offer assis-
tance to overcome the weather issues for some regions 
and result in RFM which is essential from an early flood 
management.

This research found that the NDWI index misclassified 
barren and built-up areas with floodwater, but MNDWI 
and WRI did not mix water areas with barren and built-
up (Fig.  10). However, the MNDWI index misclassified 
wet vegetation areas as flooded areas (Figu 10B), but in 
contrast, NDWI shows better performance while extract-
ing flood water in vegetation areas that you can see in 
Fig. 10B. Therefore, this study suggests that if the area has 
mixed LULC, these indices can be used to complement 
each other in clearing the misclassified areas. Future 
researchers can assess the appropriateness of other water 
indices in order to extract flooded areas in other areas 
of the world. But, some indices require spectral charac-
teristics in other bands, which might not be accessible 
in most satellites’ data. The satellite data obtained in the 
Shortwave-Infrared (SWIR) wavelength can be useful for 
detecting flooded areas. Therefore, the MNDWI images 
show better results and the results of the current study 
are in accordance with the findings of Sivanpillai et  al. 
(2021), who also concluded that in comparison with 
NDWI, MNDWI presented with more accurate flood 
extent maps.

Conclusions
In this study, we offered accessible rapid riverine flood 
mapping and monitoring with the incorporation of opti-
cal RS flood instance images and suitable flood inun-
dation processing indices. Specifically, we have used 
Landsat-8 satellite images and a comparison of different 
water indices, i.e. MNDWI, NDWI, and WRI indices, for 
rapid riverine flood mapping and monitoring. Our work 
proposed an approach of comparing the results of these 
indices to minimize the misclassified water areas. This is 
in addition to the fact that these different water indices 
have been recognized to be suitable for rapid mapping 
of flooded areas in cloud free areas. Further, these water 
indices based technique is time-independent and pro-
vides almost instant results. The combination of water 
indices has the potential to contribute to reliable flood 
extent mapping using Landsat-8 data.

The analysis revealed that the MNDWI index derived 
images showed an accuracy of above 90%, which reflects 
the reliability of results, while the rapid flood images 
determined by NDWI and WRI indices, showed less 
accuracy level. The water indices based analysis revealed 
that floodwater covered about 68% of the study area, 
mostly in the north and central parts. The analysis fur-
ther revealed that floodwater remained for about seven 
weeks. Despite the fact that riverine flooding is a fre-
quent phenomenon, our study shows that the optical 
open satellite dataset and satellite-derived water indices 
can be suitable for rapid flood mapping and monitoring 
to articulate emergency flood response activities, mainly 
for recovery and relief operations.

Despite the research being local to Pakistan, the pro-
posed approach can be extended to global perspectives 
on flooding. Using Landsat imagery, and comparing sat-
ellite-derived water indices had led to the precise map-
ping of flooded areas and showed robust results, 
matching with field survey findings. Furthermore, the 
field visit helped us to investigate real-time spatial rapid 
flood mapping in the study area. Moreover, the study 
identified areas with mixed land use and land cover for 
better delineation of the flooded area using a least mis-
classified area approach. For instance, the misclassi-
fied built-up areas covered only 5.4 square kilometer for 
MNDWI, compared to 30.4 and 39.1 square kilometers 
for NDWI and WRI, respectively. For vegetation, NDWI 
had a least misclassified area of 19.5 square kilometers, 
compared to 33.4 square kilometers and 52.4 square 
kilo-meters for MNDWI and WRI, respectively. Simi-
larly, the MNDWI and WRI showed about 1 square kilo-
meter barren land area was misclassified as water areas, 
compared with 60 square kilometers by NDWI. Fur-
thermore, we have also revealed that the exploitation of 
two nearby Landsat overlapping satellite paths enhances 
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the temporal resolution of Landsat data from ~ 16  days 
to ~ 8  days that can be utilized for rapid flood mapping 
for emergency response operations. Therefore, the rapid 
flood mapping strategy proposed here can be utilized for 
producing flood inundation maps based on pre, during 
and post-flood instance images for an area. Highlight-
ing the newly flooded areas will enhance the response 
actions in targeted areas of flood emergency manage-
ment organizations.
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