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Abstract 

Background The Southern Suez Canal Province (SSCP) has recently encountered hydro‑environmental hazards such 
as water logging and soil salinization, both of which impede the efficient land use planning.

Purpose This study aims to assess the hydro‑environmental threats to SSCP and identify the key factors that contrib‑
ute to their occurrence. Previous research has demonstrated that the Gulf of Suez Rifting‑related tectonic movements 
have a significant impact on the entire SSCP region. The influence of tectonic setting on the development of hydro‑
environmental dangers was not examined in almost any studies.

Methods Remote sensing, GIS, hydrogeological, and geophysical techniques are used to identify and assess topo‑
graphic, hydrogeological, and tectonic variables that affect hydro‑environmental hazards in the SSCP.

Results This study found that the distributions of water logging, saturated soil salinization, urban areas, and vegeta‑
tion cover changed more dramatically between 1984 and 2015. The expansion of water logging area (+10.68  km2 
rating +0.35  km2/y), saturated saline soil (+24.40  km2 rating +0.79  km2/y), and urbanized area (+58.43  km2 rating +1.89 
 km2/y) is strongly associated to the expansion of vegetation cover (+188.13  km2 at a rate of 6.07  km2/y). This could 
imply that growing agricultural expansion and urbanization are influencing the dominance of hydro‑environmental 
hazards in SSCP. The distribution of water logging features identified on the land cover map corresponds closely 
to a buried horst structure dominating the middle part of the surveyed area.

Conclusion The lowland water logging features of the SSCP provide support for the hypothesis that the buried 
horst structure that dominates the Miocene and pre‑Miocene strata has an impact on the thickness and groundwa‑
ter flow regime of the quaternary aquifer that lies above. The present study came to the conclusion that the shallow 
depth of groundwater, the vast expanse of newly cultivated lands, the impervious clay layer beneath the thin topsoil 
layer, and the low topography are the key factors influencing the development of water logging and soil salinization 
features in SSCP.

Keywords Hydro‑environmental hazards, Morpho‑tectonic controls, Shallow aquifer, Rift basins, Suez

Introduction
Numerous studies have been conducted to examine the 
relationship between tectonic structures, geomorphol-
ogy, and groundwater (Taylor and Howard 2000; Ayazi 
et  al. 2010; Elmahdy and Mohamed 2014 and 2015; 
Kaplay et al. 2017; Arnous et al. 2020; Haque et al. 2020; 
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Hegazi et al. 2023). These studies proved that structural 
features such as folding and faulting have a significant 
impact on groundwater flow patterns. The threats posed 
by the hydro-environment are significantly influenced by 
tectonic and structural features, particularly in dry and 
semi-arid regions (El-Rayes et al. 2017). Fractures, faults, 
and shear zones increase permeability and improve 
fluid transport through fractured and sheared rocks, 
which has several hydro-environmental consequences 
(Barton et  al. 1995; Caine et  al. 1996; Evans et  al. 1997; 
Gudmundsson et  al. 2001; El-Rayes et  al. 2020; Arnous 
et  al. 2020). The SSCP was greatly influenced by tec-
tonic movements that occurred during the evolution of 
the Gulf of Suez rifting, which occurred in the late Oli-
gocene and continued into the early Miocene (Bosworth 
et al. 1998). These tectonic deformations were crucial in 
forming the hydrogeological system of the SSCP. A com-
plicated hydrogeological system was created as a result of 
the developed structures that split the shallow quaternary 
aquifer in the research area into a number of sub-hydro-
geologic zones. As a consequence, the assessment of 
hydro-environmental hazards is mostly based on hydro-
geomorphological mapping and structural element rec-
ognition utilizing geophysical measurements and remote 
sensing data (El-Rayes 2004, Arnous 2016, El-Rayes et al. 
2017, Arnous et al. 2016). Today, rising groundwater lev-
els are an important component in understanding the 
interplay between geological structures and hydrogeolog-
ical processes (López and Smith 1996; Newell et al. 1999; 
El-Rayes and Geriesh 2002; Bedrosian et al. 2012; Borda 
et  al. 2022). Geo-environmental hazards might take 
numerous forms and are spurred on by a range of natural 
and human factors. However, they all have the potential 
to pose challenges for sociocultural evolution and dan-
gers to public safety, individual well-being, and sustain-
able development goals (Arnous et al. 2011 and Culshaw 
2018). Land and water are the two most crucial natural 
resources on the earth. Therefore, careful planning and 
management of these resources are extremely necessary. 
The main strategy for locating land degradation zones 
and determining the source of recharge, particularly 
in shallow aquifers, uses hydrogeological surveys, geo-
physical methods, Remote Sensing (RS), and Geographic 
Information System (GIS) technology (Arnous and Green 
2015; Arnous et al. 2015; El-Rayes et al. 2017; Moubarak 
et al. 2021). Furthermore, because of the severe environ-
mental repercussions of human and natural activities, 
it is vital to monitor and detect changes in land cover 
in order to ensure sustainable development (El-Rayes 
et al. 2023). This rise in water level causes several hydro-
environmental consequences, including soil salinization, 
water pollution, water logging, and land degradation. 
In comparison to many conventional methods, remote 

sensing, GIS, and geophysical techniques have been 
shown to be more effective at determining how salinized 
soil and water logging are affected by rising water levels 
(Metternicht and Zinck 2003; Arnous et  al. 2017; Singh 
2022; Srinivasan et  al. 2022). They could thus provide 
reasonably practical, informative, and professional rapid 
assessment tools for locating, monitoring, and precisely 
mapping structural elements, water recharge zones, land 
use/cover classes, and identifying the impacts of hydro-
environmental hazards (Arnous et al. 2015; Geriesh et al. 
2015; El-Rayes et  al. 2017). Geospatial and geophysical 
techniques should be used to locate, assess, and map the 
hydro-environmental danger features. In this case, the 
hydrogeological and structural influencing factors were 
integrated using a geospatial and geo-database system. 
Therefore, the qualitative and quantitative hazard poten-
tiality of each hydro-environmental feature are deter-
mined by the strength of the influencing factor and the 
vulnerability of the landscape (Alexander 1997; Cutter 
et  al. 2003; Bajracharya et  al. 2007; Goswami and Pant 
2008; Ebert et  al. 2009; Rawat et  al. 2011; Arnous et  al. 
2011; Arnous and Green 2015; Omran et al. 2021; Arnous 
and Mansour 2023).

Recently, the unwise direct and indirect activities 
affecting the environment are endangering the SSCP. Due 
to the rising groundwater level induced by these activi-
ties, there were numerous hydro-environmental and soil 
degradation threats. Water logging and soil salinization 
pose the biggest obstacles to the development of urban, 
industrial, agricultural, and infrastructural projects. The 
unique feature of this study is the development of an 
integrated framework based on historical seismological 
events that utilizes many tectonic, hydro-environmental, 
and topo-hydrological data sets to provide a regional 
approach to multi-hazard exposure mapping in Rift 
basins.

The goal of this study is to assess the hydro-environ-
mental hazards that threaten SSCP and to identify the 
main factors that influence their occurrence. The primary 
goal of the research is to assess the impacts of buried tec-
tonic features on groundwater flow regime and model the 
hydro-environmental hazards of the SSCP. This will be 
accomplished by analyzing, processing, and integrating 
hydrogeological, geophysical, and remotely sensed data.

Study area
The SSCP is one of the worst affected by water logging, 
soil salinization, and land degradation in Egypt (Youssef 
et  al. 2021, Arnous and Mansour 2023). It is located in 
the Egyptian Eastern Desert, near Suez City. It has a total 
surface area of 1632  km2 and is enclosed by Longitudes 
32˚22ˋ to 32˚40ˋE and Latitudes 29˚52ˋ to 30˚16ˋN. It is 
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bordered on the north by Bitter Lakes, on the south by 
Suez City and G. Ataqa, on the east by Sinai, and on the 
west by G. Geneifa (Fig. 1).

The SSCP is classified as having a desert climate since 
there is primarily no annual rainfall, and the annual aver-
age temperature is 22.7  °C. May experience the driest 
weather because there hasn’t been any rain in that month. 
The wettest month is November; with an average rainfall 
of 20  mm. January has the lowest annual average tem-
perature (14.8  °C), while August is the warmest month. 
In the SSCP, the rate of evaporation generally declines 
toward the east, with a total annual rate of 98.5 mm. By 
Suez meteorological station records, the minimum rela-
tive humidity is 45.4% and the maximum is 59.9% (Abdel 
Basset and Hasanean 2006). For the bulk of the year, the 

SSCP is dominated by wind patterns from the NW, N, 
and NE (Suez Canal University and UNEP, 1997). The 
SSCP stands out because of its high wind speed on the 
Gulf of Suez shore, where wind speeds reach as high as 
11.9 m/s.

Geology of the SSCP
The current work employs many effective processing 
techniques in an attempt to discriminate the rock units 
in the SSCP using enhanced RS data. The CONOCO 
geologic map of Egypt (1983) and some previous stud-
ies (Barron 1907, Hume 1925, Sadek 1926, Abdallah 
and Abd El-Hady 1966, and El-Akaad and Abdallah 
1971), along with the enhanced satellite images, were 
used to generate the geological map of the SSCP 

Fig. 1 Location map A and satellite image B of the SSCP
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(Fig. 2). Lithologically, the SSCP covered by a sedimen-
tary succession ranging in age from Cretaceous up to 
Recent (Fig.  2). The Cretaceous rocks at Gabal Ataqa 
are composed of dolomitic and marly limestones, 
shales, and sandstones. The cores of Gabal (G.) Ataqa 
and G. Geneifa are composed of Eocene limestone and 
marl with thin clay laminations. The Oligocene rocks 
are represented by continental sands and gravels, as 
well as volcanic basalt sheets exposed in the G. Geneifa. 
The Early Miocene sediments in the Geneifa area are 
primarily composed of limestone, sandstone, and 

gypseous clay interbeds that sit uncomfortably on top 
of the Oligocene sand and gravel (Barakat and Aboul 
Ela 1971). Upper Miocene rocks are exposed in some 
areas of G. Geneifa, and they are primarily composed 
of non-marine sand sediments, sandstones, flints, peb-
bles, gravels, and occasionally some sandy limestones. 
These rocks contain some silicified wood (Abdallah 
and Abd El-Hady 1966). Quaternary deposits in the 
Isthmus Stretch’s lowlands include aeolian sands, allu-
vium gravels with gypsum lenses, marches and sabkha 
deposits, and salt crust of varying thickness. Recent 

Fig. 2 Geological map of the SSCP created by combining interpreted enhanced TM images with the CONOCO geological map of Egypt
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sediments exist in the SSCP in the form of sand dunes, 
limes, sands and clay deposits. Windblown sands and 
wadi deposits form a thin superficial layer (Fig. 2).

The exposed rock units are stratigraphically divided 
between pre-rift and syn-rift sequences (Strougo and 
Abd-Allah 1990; Sallam et al. 2015). The former is com-
posed of Eocene rocks and can be further divided into 
Observatory, Qurn, wadi Garawi, and wadi Hof forma-
tions. The latter is represented by Oligocene and Miocene 
strata which are unconformably overlain by reworked Pli-
ocene carbonates and Quaternary clastic deposits com-
posed of poorly lithified sands, gravels, and quaternary 
alluvium (Fig. 3).

Tectonic environment of SSCP
The overall structure of the Northwestern Gulf of Suez 
Rift basin, comprising the SSCP, is made up of a wide 
horst relay zone that runs between conjugate divergent 
border normal faults. The key factors controlling syn-
sedimentation at the northern Gulf of Suez rift are the 
created horst relay zones via the development and propa-
gation of normal faults (Henaish et al. 2023). The primary 
fault groups WNW–ESE, ENE–WSW, E–W, NW–SE, 

NE-SW, and NNE-SSW are the dominant structural ele-
ments that influence and control the SSCP (Fig. 2). The 
E–W faults are the oldest and most likely pre-Miocene 
in age. The WNW–ESE faults are younger than the E–W 
faults and clearly affected Miocene rocks. Furthermore, 
the NE–SW structural fault trend is younger than the 
preceding two systems, and it is likely that it influenced 
the Quaternary sediments. Due to the drift of Arabia 
away from Africa, Miocene and post-Miocene exten-
sion in northern Egypt created a significant number 
of NW–SE oriented normal faults and rejuvenated the 
E–W oriented faults in the Cairo-Suez district by dex-
tral transtension (Moustafa et al. 1998). These faults span 
over the basal portion of the Quaternary alluvial sedi-
ments in a similar Gulf of Suez parallel trend, indicating 

Fig. 3 Simplified stratigraphic sequence of the SSCP (adapted 
from Moustafa and Abd‑allah 1991)

Fig. 4 Seismic epicenters along the SSCP from 1904 to 2017 
for events with ML ≤ 4 (Compiled catalog from the International 
Seismological Centre (ISC), and the Egyptian National Seismic 
Network (ENSN), coupled with prevalent fault trends
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a recent Quaternary reactivation episode. These ten-
dencies have been revived, according to recent seismic-
ity data acquired over the SSCP (Fig.  4) and revealing 
seismic activity along the NW–SE and E–W fault lines. 
These faults are prevalent faults with a minor amount 
of strike-slip movement (Badawy 2005; Abou Elenean 
2007). The Cairo-Suez district, including the SSCP, expe-
rienced active crustal deformation and volcanism dur-
ing the opening of the Red Sea from the Oligocene to 
the Middle Miocene, resulting in deeply buried complex 
fault and fold structures of the Syrian-Arc System (Zain 
El-Din et  al. 1994, and Hegazi and Omran 1998). This 
event is symbolized by a collection of normal faults with 
a N0-40W trend that are also connected to the Gulf of 
Suez rifting.

Geomorphology of SSCP
Understanding the geomorphological setting of the SSCP 
is essential for the sustainable groundwater manage-
ment and recognizing the hydro-environmental hazards. 
Hydro-geomorphological features are often utilized to 
characterize groundwater potential and select ideal sites 
for water management practices. The landscape of the 
SSCP is known to be greatly influenced by the tectonic 
activity of the Gulf of Suez Rifting as well as the climatic 
changes that influenced the region throughout the suc-
cessive wet and dry cycles of the Pleistocene period (El-
Fayoumy 1968, El-Shazly et al. 1975, Moustafa and Khalil 
1994, Hussein 2001, Youssef and Abdallah 2003, Arnous 
2004, El-Hefnawy et al. 2006, Arnous et al. 2011, Hagag 
and Obermeyer 2016).

The SSCP is primarily distinguished by a low elevation 
of around 1 m above sea level, but the southern and west-
ern borders are comparatively of higher relief, ranging 
from a few meters to the north and increase up to more 
than 870 m above sea level at G. Ataqa via the southwest-
ern ward slope (Fig.  5). Few spots in the lowlands sur-
rounding the Isthmus Stretch have very low relief down 
to one meter below sea level and are covered by sabkha 
deposits.

A geomorphological map is produced by differenti-
ating the main geomorphological components of the 
SSCP from DEM and enhanced satellite data. The SSCP 
has eight geomorphic components, including structural 
ridges, structural tableland, semi-flat terrain, isthmus 
length, low land with aeolian sand dunes, sand dunes 
belt, lakes and ponds, and Sabkha deposits (Fig. 6). The 
majority of the SSCP is located in the semi-flat terrain 
and lowlands of the El Dakruri depression. Exception-
ally, a few zones of land rise up to the south at G. Ataqa 
(855  m), to the west at G. Geneifa (265  m), and to the 
northeast where sand dunes are developing (El-Fayoumy 
1968, Shata and El-Fayoumy 1970, El-Shazly et al. 1975, 

El-Ibiary 1981, Ramadan 1984, Gereish 1989, Arnous 
2004, El-Omla and Aboulela 2012, Arnous 2013, Arnous 
and Green 2017). The SSCP comprises several ponds, 
marshes, and sabkhas, but Youssif El-Sebaay Water Pond 
stands out since it was produced as a result of extensive 
agricultural developments and the application of flood 
irrigation techniques. Numerous wadis (dry streams) 
drain the SSCP, their bottoms filled with fluvio-marine 
sediments and alluvial deposits. The most important 
wadis (W) are W. Abu-Hassa, W. Nour Saloum, W. Ghali 
and W. El-Mr (Fig. 7).

Materials and methods
The current research utilizes four distinct multi-temporal 
Landsat 5, 7, and 8 data types to monitor and evaluate the 
hydro-environmental threats affecting the SSCP. ASTER 
GDEM was also used to create geomorphological, drain-
age, and groundwater flow maps. The geographic posi-
tioning system (GPS) is used for surveying and projecting 
the location of water points and soil samples. The USGS 
website (https:// earth explo rer. usgs. gov) was used to 
download satellite data for Path P176/R39 as "Landsat 
7 Enhanced Thematic Mapper" (ETM7 +) and "Land-
sat 8 Operational Land Imager" (OLI) dated 1984, 2000, 
and 2015, with spatial resolution of 30  m for pixel size. 
Tables 1, 2, 3 outline the overall properties of the Landsat 
TM, ETM + 7, and OLI data. The images encompassing 

Fig. 5 The Digital Elevation Model (DEM) of the SSCP

https://earthexplorer.usgs.gov
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the SSCP were mosaicked to provide a complete view of 
the investigated area, and then a subset for the area of 
study was extracted.

NASA’s Terra mission launched the ASTER sensor in 
December 1999. It can collect stereo-image data (ASTER 
GDEM) with a base-to-height ratio of 0.6 by using its 
near-infrared spectral region and nadir-viewing and 
backward-viewing lenses. The horizontal plane has a 
spatial resolution of 15  m. The nadir-looking visual and 
near-infrared (VNIR) image from ASTER comprises 
4100 samples by 4200 lines, which corresponds to a 
60-by-60-km (km) ground region.

Remote sensing and digital image processing, which 
involve the manipulation and interpretation of digi-
tal images, are used to detect, map, and monitor 
the hydro-environmental hazards that dominate the 
SSCP. Layer stack, subset, geometric correction, and 
atmospheric corrections are all components of image 
pre-processing. Image processing and enhancement 
techniques include contrast stretching, Principal Com-
ponent Analysis (PCA), band rationing, and spatial fil-
tering. The procedure required processing the ASTER 
GDEM data with shaded relief at azimuth angles of 0°, 
45°, 90°, and 135°, and then overlaying the outcomes of 
the hill shading process to enable seeing the DEM from 

Fig. 6 Geomorphological map of the SSCP created using enhanced satellite images
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Fig. 7 Drainage map of the SSCP extracted from ASTER GDEM

Table 1 Properties of Landsat TM data (NASA 1998)

Band no Wavelength 
interval (μm)

Spectral response Resolution (m)

1 0.45–0.52 Blue‑Green 30

2 0.52–0.60 Green 30

3 0.63–0.69 Red 30

4 0.76–0.90 Near IR 30

5 1.55–1.75 Mid‑IR 30

6 10.40–12.50 Thermal IR 120

7 2.08–2.35 Mid‑IR 30

Table 2 Properties of Landsat ETM + 7 data (NASA 2003)

Band no Wavelength 
interval (μm)

Spectral response Resolution
(m)

1 0.45–0.52 Blue‑Green 30

2 0.52–0.60 Green 30

3 0.63–0.69 Red 30

4 0.76–0.90 Near IR 30

5 1.55–1.75 Mid‑IR 30

6 10.40–12.50 Thermal IR 60

7 2.08–2.35 Mid‑IR 30

8 0.52–0.90 Pan 15
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all attainable angles. Additionally, image classification 
is used to define the relevant classes in the mapped 
area. Finally, change detection and post classification 
comparison techniques are used to identify differences 
in specific feature areas seen at various times. The rate 
of change is determined, and the hydro-environmental 
implications are assessed. ERDAS Imagine 14, ArcGIS 
10.3 software were used for all operations.

Gravity and magnetic potential field geophysical 
techniques are used to successfully delineate both shal-
low and deeply buried structural features. The SSCP 
has a Bouguer gravity map as well as a Reduced to the 
Pole (RTP) magnetic map (Aero-Service 1984). The 
automatic processing of these maps with the proper 
software yielded residual and regional anomaly maps, 
which could recognize both shallow and deep-seated 
structures (Nabighian 1972; Phillips 2002). On the 
other hand, the electrical resistivity geophysical method 
has successfully been employed to delineate lithological 
variations in near surface sediments as well as struc-
tural features impacting subsurface sediment (Zhu 
et al. 2009). Vertical Electrical Soundings (VES) meas-
urements were conducted with an Earth Resistivity 
Meter (PSI). The general characteristics of this device 
made it suitable for use in the study area (user manual). 
The maximum current electrode distance used in the 
Schlumberger array was 120  m, which is long enough 
to reach a depth of roughly 20 m (Zohdy 1974). When 
the VES is proposed with a thorough understanding of 
the geological, geomorphologic, and hydrogeological 
environments, as well as the water table conditions and 
topography in a specific location, accurate and reliable 
results have been obtained (Kavidha and Elangovan 
2013; Panda et  al. 2017; Kolandhavel and Ramamoor-
thy 2019). In SSCP, three vertical electrical soundings 
were performed near water logging sites. The results 

of the resistivity survey were used to create geoelectric 
sections that showed vertical and lateral variations in 
electrical resistivity (Zohdy 1989), allowing any faults 
encountered to be identified.

The hydrogeological procedures are designed in the 
context of the current hydrogeological conditions of 
SSCP. The most significant hydrogeological and morpho-
logical features are observed in the field using a range 
of techniques, including groundwater and surface water 
level monitoring, GPS-based water point mapping, and 
field observations (Weight 2001). Using the data gath-
ered, the water table map of the SSCP is developed, 
which displays the direction of shallow groundwater flow 
and the sources of recharge. Generally, the flow chart 
summarizing the data description and the techniques 
employed in the current study is shown in Fig. 8.

Results and discussion
Groundwater occurrences
The SSCP contains two major hydrogeologic environ-
ments. The first is the Quaternary aquifer, which covers 
the northernmost portion of the region running paral-
lel to the Suez Canal. The second environment occupies 
the southern part of the research area and comprises the 
northern edges of the slopes that serve as the geographi-
cal extension of the northern Eastern Desert of Egypt 
(Fig. 6).

The Quaternary aquifer of SSCP is often semi-confined 
and composed of graded sand, rock fragments, and grav-
els with clay intercalations that occupied the semi-flat 
terrains of the study area (Moussa 1988, and RIGWA 
1988). These clay intercalations are one of the causes of 
the water logging problem. The Quaternary aquifer is 
composed of sandstone, sand, and gravel strata at many 
sites of SSCP (Fig.  9). The eastern lowlands (Isthmus 
Stretch) of the SSCP are composed of fluvio-marine sedi-
ments (evaporatic sand facies). Regionally, the thickness 
of the overlying Quaternary aquifer varies as a result of 
faulting in the bed layers beneath.

Groundwater flow behavior
The SSCP groundwater is found in Quaternary forma-
tions along the semi-flat terrain and lowlands of the El 
Dakruri depression and Isthmus Stretch. The Quaternary 
deposits formed along the semi-flat terrain and lowlands 
of the El Dakruri depression consist of sandstone, sand, 
and gravel. These deposits spread from west to east until 
they were crossed by the Isthmus Stretch, which is made 
up of fluvio-marine evaporitic sand sediments. Moreo-
ver, the Quaternary aquifer overlies directly some types 
of Pliocene clay and/or Miocene rocks (Fig.  9c). The 
Quaternary aquifer of the semi-flat terrain was in an 
unconfined condition. The main source of recharge to 

Table 3 Properties of Landsat 8 (OLI) data (NASA 2013)

Band no Wavelength 
interval (μm)

Spectral response Resolution (m)

1 0.43–0.45 Coastal/Aerosol 30

2 0.45–0.52 Blue‑Green 30

3 0.52–0.60 Green 30

4 0.63–0.69 Red 30

5 0.84–0.88 Near IR 30

6 1.56–1.66 SWIR‑1 30

7 2.10–2.30 SWIR‑2 30

8 0.50–0.68 Pan 15

9 1.36–1.39 Cirrus 30

10 10.30–11.30 Thermal IR‑1 100

11 11.50–12.50 Thermal IR‑2 100
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Fig. 8 A flow chart simplifies the data description and techniques used in the current study
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the SSCP’s Quaternary aquifer is leakage from the irriga-
tion canal system. The returned flow water from irriga-
tion practices is another recharge source, as evidenced by 
water mounds along newly reclaimed irrigated lands to 
the west of the study area. Prior to the development of 
new cultivated lands, old satellite images clearly show the 
absence of any water ponds along the same sites (Fig. 10). 
Flood irrigation has a variety of effects: First, they initi-
ate seepage processes that result in changes in pore water 
pressure inside the slope and seepage pressure as a result 
of potential transient seepage (Biniyaz et al. 2021; Guard-
iani et  al. 2022). Second, because irrigation cycles run 
in flooding-drying cycles, the nearby lowlands material 
experiences wetting–drying cycles, which strengthens 
soil degradation (Miao et al. 2020; Liao et al. 2021).

The general hydraulic gradient of the SSCP is from 
the border to the Suez Canal and Bitter Lakes (Fig. 11). 
Because the groundwater level is higher than the sea 
level, the Suez Canal and Bitter Lakes act as the discharge 
boundary, and the groundwater flow direction is from 

west to both east and northeast (Fig. 11). Due to the pres-
ence of an impervious clay layer at shallow depth, the 
depth to the water in the east is less than 0.5 m, while in 
the west it is about 6 m. The poor hydraulic conductiv-
ity sediments that constitute the Quaternary aquifer in 
the Isthmus Stretch zone abruptly convert the contained 
aquifer into a semi-confined type. The aforementioned 
factors generate water logging, which is most notice-
able close to irrigated farmland and local depressions. 
Because of the SSCP’s high rate of evaporation, the logged 
water becomes more saline, and a significant amount of 
groundwater storage is lost due to evaporation.

According to the remotely sensed monitoring of 
groundwater level signals, groundwater levels in the 
SSCP have gradually risen since the start of irrigated 
agriculture in the year 2000. Dissolved salts migrate to 
the shallow subsurface as water levels rise by capillary 
action, and when water reaches the ground surface, they 
cause water logging. During the evaporation of water in a 
dry climate, salts are left behind, degrading the soil.

Fig. 9 Quaternary sediment exposures consisting primarily of sand and gravel (A, B and D), with a clay layer beneath (C)
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Land use/land cover analysis
The enhanced multi-temporal satellite data for the years 
1984, 2000, and 2015 are used to create the LU/LC dis-
tribution maps for the SSCP. Image classification, PCA, 
image indices, and change detection techniques were 
used to identify the various LU/LC classes and the pos-
sible reasons of hydro-environmental threats (Fig.  12). 
The generated maps show that the SSCP is vulnerable 
to quick and continuous changes in numerous classes 
of LU/LC owing to both natural and human activities. 
The distributions of water logging, saturated soil salini-
zation, and vegetation cover had the most significant 
changes between the years 1984 and 2000 and between 
the years 2000 and 2015, respectively. Water-logged areas 
increased by 8.32  km2 (0.25% to 0.90%) between 1984 
and 2000, and by 2.36  km2 (0.90% to 1.07%) between 
2000 and 2015. Between 1984 and 2000, saturated saline 
soil dropped from 53.48 to 37.59  km2 (4.10% to 2.91%), 
and from 2000 to 2015, it grew from 37.59 to 77.88  km2 
(2.91% to 5.98%). Vegetation expanded by 43.43  km2 to 

75.44  km2 between 1984 and 2000 (3.33% to 5.84%), 
and by 75.44  km2 to 231.56  km2 between 2000 and 2015 
(5.84% to 17.78%) (Table 4).

Furthermore, the rate of change for each LU/LC class in 
the research area from 1984 to 2015 is assessed (Table 5). 
The most important areal changes between 1984 and 
2015 were in the distributions of water logging, saturated 
soil salinization, urban areas, and vegetation cover. The 
growing of water logging area (+ 10.68  km2 rating + 0.35 
 km2/y), saturated saline soil (+ 24.40  km2 rating + 0.79 
 km2/y), and urbanized area (+ 58.43  km2 rating + 1.89 
 km2/y) is substantially connected with the increasing of 
vegetation cover (+ 188.13  km2) with an increasing rate 
of 6.07  km2/y. This may indicate the impact of human 
activities (new land cultivation and urbanization) on the 
dominance of hydro-environmental hazards (water log-
ging and soil salinization) in the SSCP.

Fig. 10 Early satellite image from 1984 A and more recent ones from 2015 B illustrate how water logging features have expanded before and after 
the development of land reclamation activities
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Fig. 11 Water table map of the SSCP showing the groundwater flow direction
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Fig. 12 Extracted multi‑temporal LU/LC classified maps of SSCP with statistical representations of each class through the years 1984, 2000 and 2015
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Geophysical analysis of morpho‑tectonic anomalies
Gravity and magnetic data collected at any point on 
the ground surface reflect an integral impact of the 
fields generated by different causative sources in the 
vicinity of the measuring station and/or buried at vari-
ous depths, as long as these sources have a sufficient 
physical contrast with their surroundings. The shape 
of the resulting anomalies is strongly influenced by the 

depths, sizes, and azimuths of their relevant causative 
sources. Short wavelength anomalies are produced by 
near-surface sources, while long wavelength anomalies 
are produced by deep sources (Tschirhart et  al. 2013, 
Khalil 2016, Ekwok et  al. 2020, Ejiga et  al. 2021, Rao 
and Silpa 2023). As a result, by analyzing the shapes of 
the detected anomalies, the geometry of these sources 
can be deduced. These various anomalies are separated, 

Fig. 12 continued

Table 4 Area‑evaluation of the main land use land/cover classes in SSCP through the years 1984, 2000 and 2015

Class 1984 2000 2015

Area  (km2) Area (%) Area  (km2) Area (%) Area  (km2) Area (%)

Water logging 3.28 0.25 11.60 0.90 13.96 1.07

Saline soil 118.64 9.09 106.11 8.22 60.04 4.61

Vegetation 43.43 3.33 75.44 5.84 231.56 17.78

Water bodies 184.01 14.10 184.40 14.28 184.69 14.18

Islands 1.34 0.10 0.92 0.07 1.19 0.09

Sand dunes 146.39 11.22 161.80 12.53 131.11 10.07

Mountainous area 62.13 4.76 62.05 4.81 59.82 4.59

Urban area 45.47 3.49 86.68 6.72 103.90 7.98

Bare land 646.60 49.56 564.29 43.71 438.24 33.65

Saturated saline soil 53.48 4.10 37.59 2.91 77.88 5.98
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and their depths are estimated, using the mathematical 
spectral analysis (Spector and Grant 1970; Kebede et al. 
2021; Saada et  al. 2021). This issue was addressed by 
using appropriate geophysical methods to locate both 
near-surface and deeply seated faults, which are impor-
tant for figuring out the geometry of the overlying qua-
ternary aquifer. The buried horst feature governs the 
geometry and thickness of the overlying quaternary 
aquifer, resulting in a high water level in the reservoir. 
As a result, the local depressions that are overlaid the 
horst features will be waterlogged because of the rising 
water level.

Airborne potential field data (gravity and magnetic) 
were used in this study to detect near surface and deep 
seated faults. Both a lateral change in the density of the 
subsurface rocks and variations in the Bouguer gravity 
values in the study area indicate the presence of faults. 
These faults run in three different directions: NE-SW, 
NW–SE, and E–W. Using the Geosoft application, 
the regional—residual anomaly separation procedure 
was applied to the Bouguer gravity map of SSCP. The 
regional anomaly map depicts the deep and long exten-
sion faults of the NE–SW and NW–SE trends (Fig. 13).

The residual gravity map of SSCP (Fig.  14) is distin-
guished by near-surface faults of different orientations 
(ENE–WSW and NW–SE) and limited extension. These 
faults have a significant role in the lateral and verti-
cal movement of surface water, as well as occasionally 
ground water, which results in a challenge of water log-
ging. It is important to note that several of these faults 
have alignments with water logging sites, which may be 
proof of the significant role they have in creating the 
structural criteria for water logging formation.

The magnetic map can reveal the structural linea-
ments on the buried basement rocks and their overlying 

sedimentary strata. Reduced to the pole (RTP) mag-
netic map is always derived from the total magnetic 
map where the magnetic anomalies lie directly over the 
subsurface causative structures. The RTP magnetic map 
of SSCP reveals deep seated faults in the ENE–WSW 
and NW–SE directions (Fig.  15). Once more, these 
faults are the exclusive cause of some water logging 
sites.

To identify both deep-seated and near-surface faults, 
the RTP map was further subjected to a regional-resid-
ual separation technique using the Geosoft software 
(Figs. 16 and 17). The relief of the Precambrian basement 
body is significantly impacted by the N–S, NE-SW, and 
E–W trends of the deeply seated faults (Fig. 16). Table 6 
describes the deep-seated fault using information from 
the regional magnetic map.

The residual magnetic map of SSCP (Fig. 17) is distin-
guished by near-surface faults of different orientations 
(N–S and NW–SE). The geometry of the overlying Qua-
ternary aquifer is controlled by the overall structural set-
ting of the phanerozoic shallow succession, which can be 
determined through the identification of near-surface 
faults. Table  7 describes the near-surface fault using 
information from the residual magnetic map.

By using the vertical electrical sounding (VES) technol-
ogy, it has been possible to better understand the sub-
surface geologic characteristics at several water logging 
sites in the SSCP. It entails injecting a high-voltage elec-
tric current into earth sediments via two current elec-
trodes and measuring the potential difference caused by 
the current flow via a second set of potential electrodes. 
The true electrical resistivity of subsurface sediments 
and rock layers, as well as their depths, can be estimated 
using the current intensity, potential difference, and con-
figuration factor of the used array. Using the Schlum-
berger Array, three vertical electrical soundings in the 
SSCP were measured. The current electrode distance 
was around 120 m, which is enough to reach a depth of 
roughly 20 m in the earth’s layers. The three VES curves 
are of the 3-layer H-type (Fig. 18), and the intermediate 
layer of such curves has a very low resistivity value (less 
than 5 m), which is believed to be a layer of clay relying 
on the dominant surface geology. This layer prevents sur-
face water from percolating vertically, resulting in the 
creation of water logging features. The presence of a low 
resistivity cusp in the first segment of the three curves 
suggests the existence of clay lenses or a lateral facies 
change in the surface sediment layer. The bottom layer 
has a relatively high resistivity and is thought to be a frac-
tured limestone layer based on the SSCP’s geology. This 
layer is highly fractured and could serve as a drain to help 
mitigate the water logging challenge.

Table 5 Rates of change in areas of the LU/LC classes from 1984 
to 2015 of SSCP

Classes Change in areas  (km2) Rate of 
change 
 (km2/year)

Water logging  + 10.68  + 0.35

Saline soil − 58.60 − 1.89

Vegetation  + 188.13  + 6.07

Water bodies  + 0.68  + 0.02

Islands − 0.15 − 0.004

Sand dunes − 15.28 − 0.49

Mountainous area − 2.31 − 0.108

Urban area  + 58.43  + 1.89

Bare land − 208.36 − 6.72

Saturated saline soil  + 24.40  + 0.79
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Fig. 13 The regional gravity map of SSCP showing the distributions of deep faults of the NE–SW and NW–SE trends
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Fig. 14 The residual gravity map of SSCP showing the distributions of near‑surface faults with ENE–WSW and NW–SE trends
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Fig. 15 The RTP magnetic map of SSCP showing the distributions of near‑surface faults with ENE–WSW and NW–SE trends
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Fig. 16 The regional magnetic map of SSCP showing the distributions of deep faults of the N–S, NE–SW and E–W trends
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Fig. 17 The residual magnetic map of SSCP showing the distributions of near‑surface faults with NW–SE and NE–SW trends
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The geological cross-sections (Figs.  19 and 20) drawn 
across the three VES curves revealed that the second geo-
electric layer (Clay layer), which has a very low resistivity, 
acts as a barrier to prevent vertical percolation of the sur-
face water, that leads to the formation of water logging 
features. This layer is also influenced by faults, which can 
act as conduits for surface water to flow downward into 
the underlying fractured limestone aquifer. This approach 
might be regarded as a potential water logging mitigation 
strategy.

The influence of morphotectonics on groundwater flow 
regime
The faulting, folding, and fractures of bedrock aqui-
fers and their confining layers, which result in varying 
geometry and hydraulic properties, can have a signifi-
cant impact on groundwater flow (Spottke et  al. 2005; 
DesRoches et al. 2014; El-Rayes et al. 2017, 2020; Moore 
and Walsh 2021). Faults have a massive effect on ground-
water flow in the Quaternary aquifer of the SSCP. The 
geometry of the buried graben and horst features caused 
by major tectonic rifting of the Gulf of Suez has a signifi-
cant effect on the flow pattern and thickness of the over-
laid shallow Quaternary aquifer in the SSCP (Figs. 19 and 
20). The buried horst influences the geometry of the top 
quaternary aquifer, causing aquifer thickness to thin and 
groundwater levels to rise, resulting in water logging.

The groundwater flow direction in the Quaternary 
aquifer is guided by the clay layer topped horst beneath 
it. When groundwater recharged and circulating in the 
Quaternary aquifer reaches the depth of the imperme-
able clay-capped horst, it is directed in part towards the 
east (to the Suez Canal) and the northeast (to the Bitter 
Lakes) (Fig. 11). Actually, the position of the groundwater 
level is defined by this clay-capped horst, which may be 
raised above the ground surface, resulting in the forma-
tion of water logging features, particularly at topographic 
depressions.

The influence of morphotectonics on the vulnerability 
to hydro‑hazards
Water logging and soil salinization, caused by recent 
human activities at the SSCP, are now the most preva-
lent desertification phenomena, endangering soil fertility 
and causing significant water loss through evaporation. 
The prevailing morphological and tectonic evolution of 
the enclosed area has a strong influence on aquifer thick-
ness (Rubio et al. 2007). The thickness of the Quaternary 
aquifer that lies on top of the buried horst structures is 
closely connected with the distribution of water logging 
sites along the SSCP (Fig. 19). The most vulnerable area 
to water logging and, as a consequence, soil salinization 
is the thin water-bearing formation zone that lies above 
the buried horst structure at the recharge zone (Fig. 19). 

Table 6 Deeply seated fault information generated from the regional magnetic map of SSCP

Fault trend Designated number of 
faults  on Fig. 16

Total no Length
(km)

Total length
(km)

Lithology

N–S 6 3 24.3 61.1 Pre‑Cambrian Basement rocks

7 19.7

8 17.1

NE–SW 5 2 15.3 33.7

3 18.4

E–W 4 3 14.5 32.5

1 18

2 11.7

Table 7 Near‑surface faults information generated from the residual magnetic map of SSCP

Fault trend Designated number of 
faults on Fig. 17

Total No Length (km) Total length (km) Lithology

N–S 5 2 24.3 44 Eocene to pliocene rocks

6 19.7

NE–SW 1 4 18.3 60.2

2 15.3

3 12

4 14.6
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The rapid recharge rate of seepage from irrigation sys-
tems and the excess irrigation water returned-flow from 
the recently reclaimed cultivated lands both contribute 
to the development of water logging at the recharge zone 
of SSCP. The graben faulting created a sedimentary basin 
filled with thick sediments that serves as a groundwater 
reservoir zone at the lowlands discharge border (Fig. 20).

The dynamic pattern of water logging development
The analysis of satellite images and field observations 
revealed that significant tracts of water logging and water 
ponds had formed on the low land surfaces as a result 

of the cultivation of broad regions in semi-flat terrains 
bordered by low lands. The majority of the water logged 
spots are dispersed in a distinct pattern that resembles 
local topographic depressions and thin top-soil layer. 
Because of the prevailing aridity, most of the western 
semi-flat topography has weak surface expression and 
is presently covered by thin Quaternary gravely sands 
underlain by a shallow Pliocene clay layer. The extent 
of seepage and water logging within the newly culti-
vated fields in the SSCP coincides with the automatically 
retrieved surface slope from the DEM. Excess irrigation 
water seeps through the subsurface and progressively 
migrates towards the lowland along the Isthmus Stretch, 
saturating the dormant local depressions. This significant 
correlation strongly suggests the influence of geomor-
phology and landforms on the dynamics of water logging. 
Local depressions focus the seepage down the surface 
slope via the lowlands eastward, resulting in the develop-
ment of surface ponds in distant cultivated lowlands. The 
entire agricultural area in the SSCP was roughly 43  km2 
in 1984, and it expanded to 232  km2 in 2015. During the 
same time span, waterlogged and ponded spots expanded 
from around 3.3  km2 to nearly 14  km2. The present study 
clearly demonstrates that development has not consid-
ered the regional physiographic setting of soil, hydro-
logical environment, and geomorphology of agricultural 
regions. The agricultural fields in the SSCP are primarily 
planted on semi-flat topography landforms. The majority 
of the soils in these landforms are thin (less than 0.5 m 
thick), governed by structural setting, and underlain by 
an impervious clay layer. This means that the clay layer 
underneath these soils may obstruct the vertical flow of 
groundwater, facilitating the rapid development of water 
logging problems.

Conclusion
The SSCP identifies significant site impacts of the Gulf of 
Suez rifting as buried graben and horst structures. The 
resulting tectonic structures in SSCP govern the local 
groundwater flow regime and the hydrogeologic zonation 
of the overlying Quaternary aquifer. A first key step in 
explaining the groundwater flow regime and associated 
hydro-environmental hazards that prevailing in the study 
area is the identification of buried bedrock geometry and 
lateral variations in the thickness of the overlying Qua-
ternary aquifer.

The groundwater discharge zone in the western por-
tion of SSCP is distinguished by significant tectonic 
features, particularly the buried graben structures. The 
water table measurement revealed significant water level 
variations all over the eastern part of the SSCP, which 
was highlighted by the graben structure. This variation 
indicates that the graben structure serves as a basin for 

Fig. 18 VES curves at the study area showing cusps, H‑type 
and second layer with very low resistivity (clay layer)
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groundwater accumulation at the discharge area’s end of 
the flow path.

The local groundwater flow in the overlying Quater-
nary aquifer originated at the western recharge bound-
ary, directly above the buried horst-graben structure, and 
became directed into the eastern lowlands and north-
eastern Bitter Lakes. At the western recharge zone of the 
SSCP, the aquifer is primarily recharged by seepage from 
new irrigation distributaries as well as returned-flow 
water from excessive irrigation water in newly reclaimed 
lands.

The thickness of the Quaternary aquifer overlying the 
buried horst structure is strongly correlated with the dis-
tribution of waterlogged sites and soil salinized zones in 

the SSCP. Thick water-bearing formation controlled by 
graben structure receives a large volume of accumulated 
groundwater at the discharge area on the eastern border, 
causing the groundwater level to rise above the ground 
surface, resulting in the development of water logging 
features. The thin water-bearing formation overlying the 
buried horst structure at the recharge area to the western 
border is the most vulnerable to water logging and, as a 
consequence, soil salinization.

There are significant gaps in scientific understand-
ing of the environmental consequences of tectonic 
rift basins. The current study adds to closing some 
knowledge gaps by better understanding the impact 
of rift-related structures on the susceptibility to 

Fig. 19 A geological cross‑section of the SW–NE profile shows how tectonic features affect the thickness of the overlaid Quaternary aquifer (see 
Fig. 16 for deep faults & Fig. 17 for near surface faults locations)
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hydro-environmental hazards. Because rift basin envi-
ronment concepts are still in the early stages of study, 
there is no data on environmental effects are available. 
Mitigation and restoration of ecosystems are effective 
in reducing the effects of hydro-environmental haz-
ards on soil of rift basins, which needs to be researched 
more in the near future.
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