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Can sediments play a role in river flood risk 
mapping? Learning from selected European 
examples
Michael Nones1* and Yiwei Guo1 

Abstract 

Background Climate change and increasing anthropogenic pressure are two of the major drivers of increasing 
extreme events like droughts and floods. To deal with the increasing number of flooding events hitting Europe 
in the last few decades, around twenty years ago the European Commission started to develop ad-hoc legislation 
to reduce flood risk by mapping flood hazard and risk areas, such as the Directive 2007/60/EC on the Assessment 
and Management of Flood Risk. This Directive looks to identify regions where flood management strategies should be 
prioritized. Despite this holistic approach, flaws connected to the consideration of sediment transport and morpho-
logical changes in rivers exist, leading to potential underestimations of the impact of floods affecting active water-
courses or areas subjected to frequent morphological changes.

Results By discussing six examples related to European lowland and mountain watercourses affected by significant 
floods in the last 20 years, the present mini-review aims to provide additional evidence on the need for a rethinking 
of flood risk mapping, moving from a “clear water” perspective to a more integrated approach, where the interactions 
between all the fluvial components (water, sediment, biota, and humans) are adequately considered.

Conclusions The examples reported here show the importance of considering sediment and wood in flood risk 
management, suggesting the need for integrating flood-related studies with other disciplines like geomorphology 
and ecohydrology.

Keywords Europe, Flood risk mapping, Floods directive, River morphology, Sediment transport, Water framework 
directive

Legislative background
In Europe, the quality of watercourses is one of the major 
concerns for the future. This is also pointed out in one 
of the more important directives developed during the 
last two decades: the Water Framework Directive (WFD), 
which was issued at the beginning of this century (Direc-
tive 2000; Jager et  al. 2016). Despite having more than 
twenty years, this Directive still represents a holistic, 

integrated approach to water protection, as it requires, 
among other obligations, the classification of water-
courses looking at how the actual situation, in terms of 
biological, hydromorphological and physicochemical 
quality elements, compares with reference conditions. 
However, some discrepancies appear when speaking 
about river morphology, given that the Directive assumes 
that only watercourses classified in high status must 
achieve hydromorphological characteristics totally or 
nearly totally corresponding to undisturbed condi-
tions when sediments are considered (Nones et al. 2017; 
Newson et  al. 2006). Indeed, as per the WFD Annex V 
(Directive 2000) and the subsequent CIS Guidance 13 
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(European Commission Common Implementation Strat-
egy for the Water Framework Directive 2000), European 
Member States can classify surface waterbodies like riv-
ers in good, moderate, poor or bad ecological status only 
by considering biological monitoring. In the case of rivers 
and streams that are not already classified in a high sta-
tus, Water Authorities can prepare river basin manage-
ment plans by disregarding other aspects such as river 
morphology and sediment transport (Nardini et al. 2008; 
El Hourani et al. 2022; Stefanidis et al. 2022). The WFD 
somehow accounts for the presence of sediments and 
their fluxes, as it mentions river continuity not only for 
biota but also for sediments, even though the evaluation 
and improvement of such continuity is still a challenging 
topic for scientists and water managers (Habersack et al. 
2016; Heckmann et  al. 2018), in particular when speak-
ing about river restoration and rehabilitation projects 
(Thomas 2022; Nones and Gerstgraser 2016). Though, 
as pointed out by a growing number of studies (Gurnell 
et  al. 2016; Wohl et  al. 2015; Fryirs and Brierley 2012; 
Brils 2008), morphological variability, sediments and 
associated transport mechanisms in flowing waters are 
paramount to guaranteeing dynamic and healthy aquatic 
ecosystems.

An incomplete or inadequate consideration of the 
impact of fluvial morphology and sediment transport can 
have significant implications not only in the WFD imple-
mentation, but also in the case of the Directive 2007/60/
EC on the Assessment and Management of Flood Risk 
(Floods Directive-FD) (European Community Directive 
2007). This Directive was developed in 2007, following 
the WFD requirements (Segovia 2021) and to comple-
ment this previous directive. The FD aims to manage the 
risks that flooding events have on human health, the 
environment, cultural heritage, and socio-economic 
activities. However, methods and tools that should be 
applied to achieve these goals are not strictly defined in 
the Directive, while ample room is given to the various 
Member States (Mysiak et al. 2013; Nones 2015; Albano 
et  al. 2017; Simonelli et  al. 2022), eventually leading to 
improper and dissimilar implementation, such as in the 
case of transboundary river basins. In terms of mor-
phological alterations and sediment transport, very few 
details are provided on that. Only Article 6.5d of the FD 
suggests including additional information regarding the 
impact of sediments and debris floods in the preparation 
of flood maps (European Community Directive 2007; 
Radice et  al. 2016). Despite the Floods Directive was 
emanated around 15 years ago, shortcomings and weak-
nesses are still evident in the implementation phases. 
For example, it is not clear how the impact of hydromor-
phological alterations, sediments and sediment trans-
port is considered in preparing flood risk management 

plans (Nones et al. 2017; Nones 2019; Bauer et al. 2019; 
Sofia and Nikolopoulos 2020; Nardini 2022; Adamson 
2018). Generally, flood maps are developed by applying 
two-dimensional (2-D) hydraulic models. However, such 
numerical models are usually developed by considering 
only “clear water” (i.e., no sediment transport and mor-
phological changes) and non‐erodible channels, driving 
potential underestimations of the flood risk (Moel et al. 
2009; Alfieri et al. 2014; Hartmann and Spit 2016), as in 
the case proposed described in Sect. "Examples of inter-
actions between flooding events and geomorphology in 
rivers".

From the short overview of the legislative background 
reported in this section, it is evident that a rethinking 
of how rivers and flood-associated risk are assessed and 
managed in the light of WFD and FD is needed, con-
sidering sediments as an integral part of freshwater sys-
tems. For the future, a more holistic and comprehensive 
approach is advisable, to better understand the interac-
tions between all the elements that contribute to shaping 
fluvial environments.

It is worth noticing that the current Flood Risk Man-
agement approach proposed by the European FD is 
nowadays also promoted in the United States and Asia, 
given that it involves a combination of management 
measures, including structural and non-structural meas-
ures (Adnan et al. 2020; Cvetkovic and Martinovic 2021; 
Knox et al. 2022; Lashford et al. 2022), therefore the the-
ses discussed in this mini-review can be transferred to 
other regions.

Fluvial floods and river hydromorphology
A river is a dynamic system governed by hydraulic and 
sediment transport processes (Chang and Ghani 2014). 
It is largely recognized that fluvial systems show great 
spatial and temporal interactivity, and this reflects in 
very complex systems, where multiple stressors interact 
(Birk et  al. 2020; Hamidifar and Nones 2023). Focusing 
on hydraulic infrastructures developed to address flood-
related risks, such as dams and levees, these structural 
interventions in the upstream river reaches can alter both 
water discharge and sediment load not only at the local 
scale, but also downstream, potentially leading to prob-
lems for settlements and infrastructures located in the 
lowland part of the basin, eventually increasing the local 
water level and consequently the flood risk (Merz et  al. 
June 2013; Liu et al. 2018; Hooke 2015; Merz et al. 2021).

Flood risk assessment and flood hazard mapping are 
inventible steps to obtain a sustainable integrated flood 
management concept (Weak Points and in the Flood 
Risk Modelling Chain 2021). Despite the recent devel-
opment in theoretical and numerical modelling, the 
proper engineering understanding of the main processes, 
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such as long-term morphological changes, vegetation-
sediments interactions and large wood recruiting at the 
watershed scale, is still quite limited, also because of dif-
ficulties in schematizing and numerically implementing 
those mechanisms (Hartmann and Spit 2016; Sayers et al. 
2002). Typically, flood risk models and maps developed 
in the past decades do not account for sediment- and 
wood-related processes, eventually driving to possible 
underestimations of flooded areas and associated water 
extents and depths (Nones and Pescaroli 2016). This 
derives also from a lack of detailed sedimentological data 
on both bedload and suspended load during high-flow 
conditions, as such conditions are generally very diffi-
cult to monitor. However, high-flow data are paramount 
in accurately calibrating modelling tools (Liu et al. 2022), 
specifically the ones that are then applied to simulate 
flooding conditions.

In the past, reduced attention has been given to eval-
uating how bed morphology and sediment transport 
can impact flood risk and modify inundation levels 
and extent (Radice et  al. 2016; Sinnakaudan et  al. 2003; 
Sholtes et al. 2018; Song et al. 2019). Historical data and 
geomorphic analyses stressed that flood risk can be cor-
related not only with water discharge, but also with chan-
nel conveyance (James 1999; Stover and Montgomery 
2001). Indeed, the stage-discharge relationship can be 
significantly altered by sediments, leading to errors in 
numerically estimating the magnitude and arrival time 
of flood waves (Wang et al. 2019; Contreras and Escau-
riaza 2020). An increase in sediment delivery ratios can 
directly increase flood risk, as accumulation along banks 
can reduce riverine cross sections, therefore reduc-
ing the room for the river (Korup et al. 2004; Pinter and 
Heine 2005) or altering the channel conveyance and the 
river planform (Hamidifar and Nones 2023). To inves-
tigate the impact of channel morphology variations on 
river hydraulics during flooding events, scholars used 
field observations (Rickenmann et al. 2016; Wyżga et al. 
2016) and numerical models (Sinnakaudan et al. 2003; Li 
et al. 2014; Guan et al. 2015; Staines and Carrivick 2015). 
These studies have shown that the influence of sedi-
ment transport and morphological alterations represent 
a significant key driver of flood risk. Historical data and 
geomorphic analyses can inform water managers and 
engineers about the most adequate modelling tools, pro-
viding a better understanding of how the river morphol-
ogy evolves (James et al. 2012; Arnaud et al. 2015), also 
in response to flooding events. Those preliminary stud-
ies demonstrated the difference between estimating flood 
risk by considering only clear water and by accounting 
for the presence of sediments and channel/floodplain 
geomorphic processes (Brierley and Hooke 2015; Warner 
et al. 2018).

Alluvial watercourses are generally considered dynamic 
systems characterized by erodible boundaries and self-
adjusting beds, which react to varying liquid and solid 
discharges supplied from upstream (Sinnakaudan et  al. 
2003; Rickenmann et  al. 2016). Considering that water 
can flood the river surroundings when the in-channel 
levels are sufficient to exceed the bank height, local flood 
risk can be seen as driven by changes in the river channel 
stage, which may be eventually impacted by variations 
in both flow magnitude and channel conveyance (Leo-
pold and Maddock 1953; Yalin 1992; Schumm and Lichty 
1965). As introduced above, variations in sediment pro-
cesses (yield and transport) and channel morphology can 
change river morphodynamics at multiple spatiotem-
poral scales (Slater et  al. 2015; Nones et  al. 2014; Singh 
2004), ultimately leading to an impact on flood risk by, for 
example, reducing channel capacity (Slater et  al. 2015), 
adjusting the fluvial morphology following variations in 
the upstream sediment supply from upstream (Thorne 
et  al. 2007), varying the cross-section via bed aggrada-
tion and degradation caused by damming and backwa-
ter effects (Brierley and Hooke 2015; Warner et al. 2018; 
Leopold and Maddock 1953; Yalin 1992; Neuhold et  al. 
2009; Guan et  al. 2016; Costabile and Macchione 2015; 
Bohorquez and Moral-Erencia 2017). Moreover, manage-
ment practices can change the flow regime of a catch-
ment, determining its geomorphological behaviour and 
how it responds to floods (O’Connell et al. 2004; Wheater 
and Evans 2009; European Commission, Integrated sedi-
ment management 2022; Díez-Herrero and Garrote 2050; 
Shah et  al. 2020; Yildirim and Demir 2021; Bronstert 
et al. 2018), especially along floodplains, generally, more 
dynamic systems subjected to cyclical erosion and sedi-
mentation phenomena.

Rationale and limitations of this mini‑review
In the present research, six European case studies were 
reviewed, aiming to provide evidence on the potential 
impact of sediments and morphological changes during 
flooding events. This mini-review is limited to significant 
and well-documented events that happened in mountain-
ous and lowland river basins in Europe during the last 
twenty years, selected as representative of the situation 
generally observed in the continent. It is worth noticing 
that this work does not aim to be exhaustive, but rather 
to provide clear examples of the importance of consider-
ing sediments and other materials such as wood in plan-
ning flood risk management strategies. For additional 
insights on flood risk analysis and assessment, the read-
ers can refer e.g., to the recent review provided by Díez-
Herrero and Garrote (Díez-Herrero and Garrote 2050),

Despite these limitations, the present study aims to 
generate additional discussion on the importance of 
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including sediments in all the European water-related 
directives, following a path started by SedNet (sednet.
org) just after the publication of the WFD (Brils 2008) 
and resulted, after more than 20  years of work, in the 
integrated sediment management guidelines and good 
practices in the context of the WFD (European Commis-
sion 2022).

Even if based only on European case studies, the con-
clusions presented here can be transferred to other 
regions, as the approach proposed by the FD is currently 
being proposed, for example, in Asia and the United 
States (Shah et al. 2020; Yildirim and Demir 2021).

Examples of interactions between flooding events 
and geomorphology in rivers
More than 2000 flood events happened in Europe from 
2000 to 2015, as can be seen in the flood distribution 
reported in Fig.  1. It can be noticed that France, Spain, 
Poland, Norway and Germany are the countries where 
most flooding events occurred in this period (Hamidifar 
and Nones 2023).

In the following subsections, a few significant events 
that happened in the last twenty years in different Euro-
pean countries, including the countries mentioned above, 
are reviewed in detail. These examples of how sediments 
and other materials like wood can impact flood risk in 
both lowland and mountainous watersheds aim to point 
out the importance of considering all the fluvial com-
ponents (water, sediments, biota, humans) in flood risk 
mapping.

Flash flood in Braunsbach (Germany), 2016
Bronstert et  al. (2018) noted that an extreme event 
occurred in May 2016. The accumulated 131 mm rainfall 
and a maximum 5-min intensity of 157 mm/h happened 
in just two hours (16:00–18:00), causing a flash flood 
that significantly impacted the cities of Grimmbach and 
Orlacher Bach in southwestern Germany (Fig.  2). The 
cycling path of the Grimmbach’s outlet was clogged and 
damaged by large amounts of wood. Besides, the Brauns-
bach town was devastated by discharges transported 
along the Orlacher Bach. Fortunately, no casualties 

Fig. 1 The number of flood events that happened in European countries (except Russia) from 1992 to 2015 (Data available at https:// www. eea. 
europa. eu/ data- and- maps/ data/ europ ean- past- floods)

https://www.eea.europa.eu/data-and-maps/data/european-past-floods
https://www.eea.europa.eu/data-and-maps/data/european-past-floods
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caused by the event were recorded. However, damages 
were estimated to be more than 100 million euros, and 
this impacted the local municipality, as more than two 
years were needed before recovering from the event.

Due to the severe damages caused by this flood haz-
ard, one of the most urgent points was to figure out the 
driving forces of the event, and to further develop inte-
grated management policies. Lucía et al. (2018) applied 
a combined approach, including peak discharge estima-
tion, comparing available aerial photographs before and 
after the flood, and field observations were used to ana-
lyse changes in channel width. Besides, a mapping of 
landslides and landslide connectivity with the channel 
network and the amount of large wood recruited and 
deposited in the channel was performed, showing the 
strict correlations between the hydrological and geo-
morphological events.

The post-event survey aimed at understanding the 
morphological changes and large wood dynamics 
caused by the flash flood, and it was conducted by an 
integrated methodology combining geomorphologi-
cal, sedimentological, and hydraulic data and evidence. 

Field survey information was combined with remote 
sensing to analyze channel changes and the sources and 
dynamics of wood at the sub-reach scale.

Gaume and Borga (2008) proposed to estimate the 
peak discharge to further understand the hydrologi-
cal response and its potential correlation with the mor-
phological response. The morphological characteristics 
before the flash flood were obtained using ArcGIS to 
process orthophotos and a digital elevation model. These 
data were derived from uncrewed aerial vehicles, allow-
ing for describing the topography with high resolution, 
and for evaluating channel variations caused by the 
flooding event in detail. At last, to analyze the large wood 
dynamics, a large wood budget was made by employing 
the approach proposed by Benda and Sias (2003) and 
improved by Comiti et  al. (2016) to account for flood 
conditions. A series of metrics (e.g., average channel 
slope, drainage area at the upper limit of the reach, unit 
stream power, stream power index, confinement index) 
was derived to correlate morphological changes to the 
flood hydrograph.

Fig. 2 The location and the Digital Elevation Model (DEM) of the Kocher River, the Grimm Bach and the Orlacher Bach, in Germany
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Looking at the studies made after this flooding event, it 
can be concluded that the channel and hydraulic param-
eters’ response to extreme events can be explained by 
the morphology of the catchment and the local chan-
nels. Besides sediment, it should be noted that also large 
wood, which mostly comes from the fluvial corridor, can 
represent a significant component during a flash flood in 
mountain watersheds, therefore demonstrating the mor-
phological changes and the recruitment and deposit rates 
of large wood should be considered in mapping and miti-
gating flash flood hazards.

Flood in Central Europe, 2021
The July 2021 flood in Central Europe (Fig.  3) has been 
known as one of the most severe disasters in Europe dur-
ing the last half century, which the cause being extreme 
precipitations with up to 150 mm within only 4 h (15:00–
18:00). This disaster claimed many lives of central Europe, 
especially leading at least 180 deaths in Germany. Moreo-
ver, according to Munich Re (2021), such a flood caused 
a total cost of EUR 46 billion and Germany alone has lost 
around EUR 33 billion. The German Landers of North 
Rhine-Westphalia and Rhineland-Palatinate, Belgium, 
Netherlands and Luxembourg were all catastrophically 
affected by this disaster, with the two German regions 
being the two most affected. The northeast of the low 

mountain range Eifel in Germany, namely the villages 
along the rivers Ahr and Erft, both left tributaries of the 
Rhine River, were devastatingly affected, with buildings, 
household goods, industries, and critical infrastructure 
such as railways, roads and bridges severely damaged.

Due to the devastating impact of this flood and to bet-
ter assess, predict, prevent, and manage future hazards, 
scientists and practitioners, including Karlsruhe Institute 
of Technology (KIT), the World Weather Attribution 
(WWA), Roggenkamp and Hergert (2022), and Korswa-
gen et  al. (2022), collaborated actively to find solutions 
across discipline boundaries. The KIT Center for Disaster 
Management and Risk Reduction Technology (CEDIM, 
www. cedim. kit. edu, last access: 9 May 2022) in Germany 
applied the so-called Forensic Disaster Analyses (FDA) 
cooperated to deeply investigate the root causes of dis-
asters and managed to have a better understanding of 
how natural hazards become socio-economic disasters, 
also thanks to the ability to investigate the disaster timely, 
within a few hours. After examining the dynamics and 
interrelations of disasters, identifying major risk drivers, 
estimating the impact (damage, fatalities, and displaced 
people) and inferring possible implications for disaster 
mitigation, CEDIM’s FDA demonstrated that the flood 
risk in those affected regions was seriously underesti-
mated since the historical data was not considered into 

Fig. 3 The location and the Digital Elevation Model (DEM) of the Erft River Basin and the Arh River Basin

http://www.cedim.kit.edu
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flood hazard maps, which were developed only based on 
information retrieved from gauge measurements taken 
during the few last decades.

It is suggested by a recent report of the World Weather 
Attribution (WWA) that an increase in precipitation, 
which has similar meteorological characteristics to the 
rivers Ahr, Erft, and the Meuse, may lead to climate 
change (Kreienkamp et al. 2021). Except for the extremer 
rainfall, humid weather conditions led to antecedent 
precipitations index higher than that of the average wet 
period, which ultimately caused a greater susceptibility to 
floods. In addition, the steep slopes of the Ahr and the 
other river valleys contributed to triggering the process 
of rapid rainfall-runoff transformation.

Faranda et al. (2022) investigated the atmospheric driv-
ers and dynamics of the event, applying an attribution 
approach based on atmospheric circulation analogues. 
This study has shown that the recent cut-off lows in 
Western Europe tend to hold more stability, resulting in 
longer-lasting precipitation events and an increased risk 
of flooding.

Korswagen et  al. (2022) took a field trip to the Ahr 
Valley to discuss structural failures of buildings and, 
according to their outcomes, the structural failures were 
mainly caused by erosion and damming of debris and 
flood water flow. Hillslope denudation and widespread 
landslides lead to excessive sedimentation in the river 
network, in turn contributing to morphological changes 
that interact nonlinearly with flood propagation. Besides, 
the post-event image presented in their work illustrated 
that large amounts of debris were transported in crowded 
and overcrowded systems, with severe consequences 
for the transmission and impact of flooding. Moreover, 
construction sediment and woody debris brought from 
upstream valleys were trapped in the channel, potentially 
damming bridges and blocking the river channel, result-
ing in a further enhancement of water levels.

Apel et  al. (2022) applied a simplified hydrodynamic 
flood model to retroactively incorporate spatially explicit 
information, shedding light on the expected extent of 
flooding and its influences. Though the German govern-
ment and the Global Flood Awareness System (GloFAS) 
which was developed by the European Commission and 
the European Centre for Medium-Range Weather Fore-
casts (ECMWF) have their river flood forecast system, 
it only provided expected discharges or water levels at 
specific river gauges. And flood forecasts released by 
the German government and the GloFAS suffered from 
problems such as low spatial resolution, non-inclusion of 
flood protection facilities, and forecasting floods based 
on previously prepared hazard maps rather than on 
actual events. The hydrodynamic flood models were thus 
introduced to derive critical locations of life-threatening 

flow conditions, vehicle instability, and structural fail-
ures of buildings and infrastructure from inundation 
and flow velocity maps. Due to the ability of the hydro-
dynamic model to simulate the building collapse, persons 
drowning, or floating and toppling cars, these prediction 
results can greatly improve current disaster manage-
ment and early warning response. However, no infor-
mation on morphological changes and the impact of 
sediment transport can be derived from such a modelling 
approach, decreasing its overall impact.

Looking at the event from a socio-economic point of 
view, Fekete and Sandholz (2021) summarized the failure 
of (early) warning chains and the inadequacy of preven-
tion and protection measures in Germany, while stressing 
the importance of identifying communication problems 
in warning chains in the case of a flash flood. On this line, 
Thiebes and Schrott (2021) used the data of July 2021 to 
propose a relevant analysis and a thorough discussion 
over how early warning systems work or fail and what 
they can achieve, as well as where possible weaknesses 
might lie.

In short, to avoid and better prepare for extreme 
events that are likely to occur in the future, it is of great 
significance to predict both physical characteristics and 
potential impacts on society given the fact that the pres-
ervation of our natural environment is essential (Taylor 
et  al. 2018; Merz et  al. 2020; WMO WMO Guidelines 
2015), but should co-exist with the societal development.

Flood in the lower Orba River (Italy), 2019
On 21–22 October 2019, an extreme flood event hap-
pened in northwest Italy (Fig. 4), causing significant dam-
age along the lower Orba River. During the period from 
18–24 October 2019, the majority of northwest Italy was 
affected by prolonged and intense precipitation. This 
extreme precipitation event also brought a severe flood 
to the Orba River and the Lemme, with Albedosa, Piota 
and Stura valleys being the severest affected areas in the 
catchment. This event caused only one fatality, but agri-
cultural activities, structures and infrastructures were 
damaged severely, with significant consequences on the 
local economy (Liguria 2019).

To evaluate the flood-water dynamics and derive 
hydro-geomorphic hazard maps, Mandarino et  al. 
(2021a) conducted an extensive field survey campaign 
by laying more emphasis on flood-induced erosion and 
sedimentary landforms, damage to anthropogenic struc-
tures, areas of flood, maximum water levels and major 
flood directions. Thanks to such field investigations, the 
authors were able to point out that floods were a major 
trigger of erosional and depositional processes, affect-
ing the riverbed and the floodplain (Mandarino et  al. 
2021a). During these processes, a generalized intense 
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sediment mobilization affected the active channel, while 
no significant variations were observed in the planform. 
Moreover, in the inner part of some of the observed 
river bends, especially in Pasaracqua and Grava, down-
stream of Retorto and on the inner side of Casalchemeli, 
a clear record of riverbank deposits was present, which 
usually originates from the damage or collapse of the 
embankments of the main and dirty roads, as in the case 
of Capriata, near the bridges on both sides of the conflu-
ence of Panatiani, Garzaia and Bormeida. Silt deposits 
were recognized mainly in depressed areas or upstream 
of road embankments. Severe surface erosion has also 
been formed on road embankments, together with 
their destruction and partial collapse downstream of 
these infrastructures, probably because of the clogging 
of drainage pipes because of the sediments transported 
during the flood. Concerning the upstream of Garzaia, 
flood waters reactivated the scour holes in the dusty road 
embankments, triggering severe erosion and sedimenta-
tion processes downstream, with risks of collapse. More-
over, a large amount of floating large woody debris was 
trapped by single obstacles like riparian vegetation and 
scaffolding, resulting in backwater effects. Overall, this 
event resulted in banks’ instability and remobilization of 
sediments in the river channel, reactivation of extensive 
riparian protection scour, and locally associated channel 
widening. Large lowland areas have been flooded, con-
tributing to erosion and deposition processes that exten-
sively shaped newly formed and existing landforms.

The flooding event caused major damage to the sur-
rounding arable land, transportation infrastructure and 
buildings. In addition, the spatial distribution of flood-
induced ground effects and the dominant flood flow 
direction on the floodplain highlighted the interference 
of roads and levees with flood propagation, thus accel-
erating the initiation of erosion and sedimentation pro-
cesses (Horacio et  al. 2019; Mandarino et  al. 2021b). 
Areas outside the lowland pile suffered great destruction 
not only by unrepaired damages, but also by levee over-
topping, indicating that it is vital to include the transport 
of vegetation, woods, and sediments in the development 
of flood management policies.

Flood in Switzerland, 2005
A flood that happened in Switzerland (Fig. 5) in August 
2005 has been regarded as the costliest disaster in Swit-
zerland ever since the historic flood of 1972, causing six 
fatalities and a total loss of more than CHF 3000 million 
(around EUR 3080 million) (Hilker et al. 2009; Hegg et al. 
2000). Continuous rainfall occurred over most of Swit-
zerland between Lake Geneva and Lake Constance from 
August 18 to 23, with most of the rainfall concentrated in 
the 48 h from August 21 to 23 and exceeding 100 mm. In 
some areas of northern Switzerland, the rainfall reached 
260  mm in 3  days. Extensive and continuous heavy 
rainfall caused severe flooding in many steep mountain 
streams in the Prealps region and large lowland rivers on 
the Swiss plateau north of the Alpine arch (such as the 

Fig. 4 The location and the Digital Elevation Model (DEM) of the Italian Orba River
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Aare and Reuss basins), leading to very significant land-
slide activity within and outside forests (Raetzo et  al. 
2005). This study demonstrated that the sediment-related 
geomorphic processes were the main reasons causing 
this flood hazard (Rickenmann et  al. 2016). Sustained 
and partially intense precipitation from August 20 to 22 
resulted in many mountain rivers discharging well above 
the threshold for bedload motion.

Generally, the main source of sediment in flash floods 
is the lateral and vertical erosion of the riverbed (Bez-
zola et  al. 2005). During this flood event, lateral ero-
sion occurred at several locations with a frequency and 
extent never observed in Switzerland. Moreover, lat-
eral erosion damaged about 60% of the bank protection 
along the shoreline (Sinnakaudan et al. 2003). As a con-
sequence, some sections of the impacted rivers experi-
enced in-channel aggradation resulting in overbank flow, 
flooding, and overbank sedimentation. Even the cutting 
of some channels was recorded, resulting in damage to 
river protection, hydraulic engineering structures, roads, 
bridges, buildings, and agricultural land. In the Chirel, 

the Engelberger Aa and the Schächen River together 
over 350,000  m3 of bed sediments were deposited in and 
outside the channel on account, blocking the passage of 
water under bridges and causing major backwaters. Even-
tually, they led to, for example, a missed loss of CHF 85 
million in the village Oey on the fan of the Chirel River 
(Badoux et al. 2014). In addition, a large amount of large 
wood was mobilized in the Tor River and along moun-
tain rivers by landslides, mudslides or lateral erosion 
of the entire river network (Bezzola et  al. 2005). As the 
riverbed conditions have already deteriorated previ-
ously, large wood led to blockage of bridge interfaces or 
weirs at many critical locations, which not only acceler-
ated riverbed destruction, but also caused backwater and 
accelerated coarser sediment deposition. The relative 
importance of sediment transport during the 2005 Swiss 
floods can also be illustrated by comparing estimates of 
migrated bedload with estimates of annual mean bedload 
transport: in the case of the Chirel, the Engelberger Aa 
and the Schächen rivers, event-based bedload was 4–26 
times greater than annual bedload transport.

Fig. 5 The location and the Digital Elevation Model (DEM) of the Swiss basins of the Kander River, the Kleine Emme River, the Gr. Melchaa River, 
and the Landquart River
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This example shows that erosion or aggradation trig-
gered by flooding events and high-concentrated cur-
rents are likely to lead to increased flood hazards and are 
probably as critical as changes in streamflow hydrology 
(Stover and Montgomery 2001; Pinter and Heine 2005). 
Moreover, intense sediment transport, bedload in par-
ticular, during flood events can lead to increased costs of 
damages (Badoux et al. 2014). Therefore, both sediments 
and large wood transportation should be considered in 
flood risk management (Slater et  al. 2015), to plan ade-
quate policies and reduction strategies.

Flood in Eastern Europe, 2020
The flood that occurred from June 17 to 23, 2020 in the 
Siret and Prut River basins in the central and eastern 
parts of Romania (Fig. 6) is regarded as one of the larg-
est floods ever recorded in this area over the last 80 years 
(Ionita and Nagavciuc 2021). During the flood event, the 
eastern part of Romania, the Republic of Moldova, and 
Ukraine experienced extreme precipitations six times 
higher than the monthly average (SHS Raport Hidrologic 
Privind Viitura Pluvială Din Luna 2020).

The flood in the Siret and Prut River basins exhibited 
unique characteristics due to its different runoff values, 
water volume, and duration. The flood event in the Siret 
basin began with a high streamflow upstream on June 15, 

and remained at a high level until June 21. The water level 
rose rapidly after June 21, until it peaked on June 24, with 
the flow reaching 640  m3/s (Ionita and Nagavciuc 2021). 
When it comes to the Prut River, the first flood was 
observed between June 14 and 21, with streamflow twice 
as high as that between June 13–14. The second largest 
flood of the Prut River Basin happened on June 22, and 
this large-scale flood was caused by the high precipitation 
in the upper stream of the Prut River Basin (SHS Raport 
Hidrologic Privind Viitura Pluvială Din Luna 2020). The 
abnormally high daily streamflow remained until June 
27, after which the river flow rate began to drop rapidly, 
returning to its normal values on June 30.

The extreme flood event that happened on June 2020 
has caused significant socio-economic losses not only 
in the Siret and Prut River basins, but also in other 
watersheds in East and Central Europe. It is reported 
that damages worth around EUR 382–412 million were 
caused by this flood event, including EUR 290 million in 
Romania, EUR 2 million in the Republic of Moldova, and 
EUR 90–120 million in Ukraine (RFE/RL 2022; DIGI24 
2022; NewsMarker Digurile 2023; DSE Indici Statistici 
Despre 2022). Infrastructure such as bridges, sidewalks, 
national roads, railroads, and streets in the affected areas 
was damaged, and landslides occurred in the mountain-
ous regions of Ukraine. In addition, more than 10,000 

Fig. 6 The location and the Digital Elevation Model (DEM) of the Siret River and Prut River Basins, in Romania, Moldova, and Ukraine
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households were ruined by the floods and six people 
were tragically killed, three each in Romania and Ukraine 
(RFE/RL 2022; CAPITAL S–Au 2023; Bilanțul and 
Inundațiilor: Trei Persoane Luate de Viitură 2022). The 
poor management of the rivers impacted by this flood 
and the lack of adequate flood risk maps aggravated the 
overall balance, as many settlements were impacted not 
only by water, but also by debris flows and landslides.

This event represents another example of the fact that 
proper water and flood management plans are critical 
to prevent and reducing flood damage. The Romanian 
government started implementing the European Flood 
Management Directive in 2009, while Ukraine and the 
Republic of Moldova started to do so only in 2022 (Apele 
Române Național 2017; Dniester Commission Flooding 
in Western Ukraine 2022), with expected delays con-
nected with the political situation.

Mountain flood in Western Norway, 2017
On 24 July 2017, a flash flood occurred in a small and 
steep watercourse called Storeiva River Watershed 
(SRW) in Western Norway (Fig.  7). Despite the small 
size of this basin (24.75  km2), the flooding caused more 
than EUR 7 million in property damage and more than 
EUR 5 million in post-disaster reconstruction costs 
(Moraru et  al. 2021). In addition, the flood destroyed a 

small 100-year-old hydroelectric power plant, but, fortu-
nately, no casualties were registered (Moraru et al. 2021). 
The flash flood was mainly caused by the intense rain-
fall accompanied by warm weather, typical of a summer 
morning. Four hours of precipitation caused a recorded 
peak flow of around 130–280  m3/s (Leine 2017; Bruland 
2020).

To deeply understand the causes and effects of the 
flood event and apply the research findings to similar 
watersheds to reduce damages, a hydrologic model was 
developed as well as the estimation of hydraulic forces 
(Bruland 2020). The visual documentation during the 
flood event was also used to help improve the accuracy 
of the hydrologic model and hydraulic estimations, to 
eventually address the modelling uncertainties caused by 
the lack of the gauging station and long-term hydrologic 
and hydraulic data (Moraru et al. 2021). However, being 
a mountainous basin, sediments and woods were also 
intensively mobilized during the event. The modelling 
result showed that the intense erosion of the left bank led 
to the water overflow, generating a new water flow path. 
Moreover, because of the gentler slope, the sediment pro-
duced during the generation of the new flow path was 
deposited into the original river channel, causing water 
levels to rise due to sedimentation, and subsequent flood-
ing of houses nearby (Moraru et al. 2020).

Fig. 7 The location and the Digital Elevation Model (DEM) of the Storeiva River Basin, in Norway
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As demonstrated in this example, erosion and sedi-
mentation processes can have a significant impact on the 
development of mountainous watersheds during flash 
floods, such as by creating new water flow paths or fos-
tering the aggradation of the main channels. Thus, it is 
necessary to take sediment transport into flood manage-
ment considerations, especially in mountain rivers like 
the SRW watershed. Moreover, this case can also pro-
vide a reference for studying flood events in small, steep 
mountain rivers, by considering hydro-morphological 
alterations.

Summary and future perspectives
Floods represent the third primary reason causing eco-
nomic loss worldwide among all natural hazards, causing 
total damage of USD 51 billion (EUR 48 billion) in Europe 
between 2006 and 2015. According to the report of the 
Intergovernmental Panel on Climate Change (IPCC) of 
2021, flood damages in the past decade were ten times 
more severe than in the period 1960–1970 (Masson-
Delmotte et  al. 2021). With the release of the European 
Union Floods Directive (2007/60/EC), flood risk assess-
ment and management gained more attention, as addi-
tional resources and efforts were dedicated and allocated 
to the assessment, mitigation and management of flood 
risk under the background of climate change, population 
growth and economic changes (Nones 2015; Kreibich 
et al. 2022; Priest et al. 2016; Skoulikaris 2022).

The present mini-review provides a few examples of 
flooding events that happened around Europe in the last 
twenty years, in both mountainous and lowland river 
basins (Table 1).

These examples report clear evidence that claims 
for a rethinking of flood risk mapping, moving from a 
“clear water” perspective to a more holistic approach in 

modelling flood risk, where the interactions between all 
the fluvial components are adequately considered.

Focusing on mountain streams, one can notice that 
a significant relationship often exists between flood-
ing events and the erosion, transport, and deposition 
of coarse material mainly as bedload. In addition, large 
wood or woody debris mobilized during the flow can 
represent another important factor increasing the hazard 
of floods. Indeed, the mobilization of large wood often 
increases and aggravates the damage caused by water 
and sediments, mainly due to the impact that wood can 
have on human infrastructures like bridges and levees. 
Lowland watercourses, on the other part, are generally 
affected by an increase in suspended load during flooding 
events, with consequent overaggradation of floodplains 
and an increase in water levels, ultimately leading to an 
increment in local flood risk.

It is worth mentioning that, from the examples pro-
vided here, one cannot conclude that considering river 
sediments in flood risk maps will automatically reduce 
the costs associated with flood damages. However, as 
shown here, there is evidence that not considering sedi-
ments can lead to primary and secondary impacts and 
damages. Taking sediment transport and morphological 
changes into account in flood management and optimiz-
ing relevant regulations to highlight its importance is 
essential, also to eventually reduce costs due to sediment-
related damages. This is especially needed when floods, 
lateral and vertical erosion can lead to the destruction of 
man-made facilities and hydraulic infrastructures such as 
bridges, and this debris is then deposited in the river, fur-
ther expanding backwater, and intensifying the destruc-
tive force of floods.

Moreover, it is vital to take into consideration cli-
mate change in the development and implementation of 

Table 1 Summary of the case studies

The elements to be considered are derived from post-event analyses

Country Type of flood River basin Key elements to be considered References

Germany Flash flood Mountainous Sediments, wood material Bronstert et al. (2018), Lucía et al. (2018), Gaume and Borga (2008), 
Benda and Sias (2003), Comiti et al. (2016)

Central Europe River flood Lowland Sediments, society )

Italy River flood Lowland Sediments, vegetation Liguria (2019), Mandarino et al. (2021a), Horacio et al. (2019), Man-
darino et al. (2021b)

Switzerland Flash flood Mountainous Sediments, wood material Slater et al. (2015), Hilker et al. (2009), Hegg et al. (2000), Raetzo 
et al. (2005), Bezzola et al. (2005), Badoux et al. (2014)

Eastern Europe River flood Lowland Sediments, legislation Ionita and Nagavciuc (2021), SHS Raport Hidrologic Privind Viitura 
Pluvială Din Luna (2020), RFE/RL (2022), DIGI24 (2022), NewsMarker 
Digurile (2023), DSE Indici Statistici Despre (2022), CAPITAL S–Au 
(2023), Bilan-ul and Inundaiilor (2022), National and de Manage-
ment   (2017), Dniester Commission Flooding  (2022)

Norway Flash flood Mountainous Sediments, wood material Moraru et al. (2021), Leine (2017), Bruland (2020), Moraru et al. 
(2020)
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European flood risk management plans to mitigate the 
impact of floods and reduce their negative effects from a 
long-term perspective.
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