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Abstract 

Background The Cameroon Volcanic Line (CVL) is an oceanic-continental megastructure prone to geo-hazards, 
including landslide/mudslide, gully erosion and flash floods targeted in this paper. Recent geospatial practices advo-
cated a multi-hazard analysis approach supported by artificial intelligence. This study proposes the Multi-Geoenviron-
mental Hazards Susceptibility (MGHS) tool, by combining Analytical Hierarchy Process (AHP) with Machine Learning 
(ML) over the North-Moungo perimeter (Littoral Region, Cameroon).

Methods Twenty-four factors were constructed from satellite imagery, global geodatabase and fieldwork data. Mul-
ticollinearity among these factors was quantified using the tolerance coefficient (TOL) and variance inflation factor 
(VIF). The AHP coefficients were used to weigh the factors and produce a preliminary map per Geoenvironmental haz-
ard through weighted linear combination (WLC). The sampling was conducted based on events records and analyst 
knowledge to proceed with classification using Google Earth Engine (GEE) cloud computing interface. Classification 
and Regression Trees (CART), Random Forest (RF) and Gradient Boosting Regression Trees (GBRT), were used as basic 
learners of the stacked hazard factors, whereas, Support Vector Regression (SVR), was used for a meta-learning.

Results The rainfall was ranked as the highest triggering factor for all Geoenvironmental hazards according to AHP, 
with a coefficient of 1, while the after-learning importance assessment was more varied. The area under receiver 
operating characteristic (AUROC/AUC) was always more than 0.96, and  F1-score is between [0.86–0.88] for basic classi-
fiers. Landslides, gully erosion and flash floods showed different spatial distributions, confirming then their probability 
of co-occurrence. MGHS outputs clearly displayed two and three simultaneous occurrences. Finally, the human vul-
nerability assessed with population layer and SVR outputs showed that high human concentrations are also the most 
exposed, using the example of Nkongsamba’s extract.
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Conclusions Combining AHP with single learners, then a meta-learner, was efficient in modelling MGHS and related 
human vulnerability. Interactions among geo-environmental hazards are the next step and city councils are recom-
mended to integrate results in the planning process.

Keywords Analytical hierarchy process, Cameroon volcanic line, Human vulnerability, Machine learning, Multi-
geoenvironmental hazards susceptibility, North-Moungo perimeter

Introduction
The Sendai Framework for Disaster Risk Reduction 
(SFDRR), stresses the need to understand disaster risks 
through identifying and assessing exposure to all hazards 
(UNISDR1 2015b). Geo-environmental hazards specifi-
cally, result from combined anthropogenic and natural 
factors (IRDR2 2014). They can occur suddenly (earth-
quakes and volcanic eruptions) or over time (flash floods, 
drought, desertification, landslides, erosion), leading to 
fatalities, damages to property/environment and disrup-
tion of services (Bang 2022). A rapid response to these 
hazards is necessary to assess damages, save lives and 
mitigate reoccurrence consequences (Bang et  al. 2019). 
This study focuses on landslides, gully erosion and flash 
floods.

Landslides are a sudden upward-downward mass 
movement of debris, soils or rocks due to gravity and 
other interaction of geo-environmental and human-
induced factors (Hungr et al. 2014). The majority of land-
slides originate from hydroclimatic events, specifically 
prolonged and/or huge rainfall (Park and Kim 2019) with 
several societal and environmental losses. An estimated 
4.8 million peoples have been affected by landslides, and 
more than 18,000 deaths were recorded between 1998 
and 2017.3

Gully erosion on its own, is an important phase/form 
of soil loss and land degradation especially in semi-arid 
and arid regions. Several processes, i.e., anthropogenic – 
agricultural practices (Zhao and Hou 2019), deforestation 
(Gholami 2013) – natural, i.e., wind (Skidmore 1982), as 
well as overland water flows (Xiong et  al. 2018), easily 
trigger or promote soil erosion. According to literature, 
flowing water, i.e., torrential, represents the main natural 
driver, initiating or emphasizing gullies dynamic, which 
are particularly devastating for both environment and the 
society (Arabameri et al. 2020; Pourghasemi et al. 2020a).

Besides, flood refers to an overflow of water onto 
normally dry surrounding lands (NOAA/NWS).4 Both 
coast lands and inlands are affected. Depending on the 

triggering factor, the spatial location and the speed of the 
event/process, there three main types such as, coastal 
flood, fluvial flood and pluvial flood. Between 1995 and 
2015, about 150,061 flood events happened worldwide, 
approximately 109 million people were impacted by the 
flood damages, causing 157,000 deaths (UNISDR 2015a),5 
with direct costs of USD 75 billion per year, which were 
liable for 11.1% of the global disaster casualties (Alfi-
eri et  al. 2017). Several investigations report that floods 
affected around 200 million people each year on a global 
scale (e.g., Tien Bui et al. 2019). In this study, pluvial flood 
was studied, due to its suddenness compared to the other 
two types, affecting more the population preparedness/
resilience; while events of its (re)occurrence in the study 
area, were recorded during the rainy season, preceding 
or simultaneously with landslide and gully erosion (see 
Data and Methods section). Usually, the streams over-
flow from an existing waterway (river, stream, watershed, 
drainage ditch, etc.), happens between few minutes to 
less than 6 h, often as a result of heavy rainfall and inun-
date surrounding areas (Kron 2005). It is then commonly 
referred as flash flood, as used here.

Recently, the UNISDR has emphasized the signifi-
cance of multi-hazard assessment and referred to it as 
an essential tool for a safer world in the twenty-first cen-
tury (UNISDR 2015b, 2015c). In this regard, static and 
dynamic geospatial models have been developed and 
diversified for single hazard, with technical approaches 
applicable to simultaneous multiple hazards mapping.

The field inventory-based and plotting of data for-
merly used to produce hazard susceptibility map 
(HSM) (Varnes 1984; Colombo et  al. 2005), was first 
completed by aerial photointerpretation, then satellite 
data, to build heuristic, statistical and data-driven mod-
els (Al-Juaidi et  al. 2018; Khosravi et  al., 2018; Meena 
et al. 2019; Rahmati et al. 2016; Mihi et al. 2020;). Then, 
artificial intelligence (AI) algorithms have been intro-
duced in recent decades, to overcome performance 
limitations, especially artificial neural network (ANN) 
(Wang et al. 2019), and machine learning (ML) (Sadler 
et al. 2018; Pham et al. 2019; Chen et al. 2020; Towfiqul 
Islam et al. 2021), improving at the same time warning 1 United Nations International Strategy for Disaster Reduction.

2 Integrated Research on Disaster Risk.
3 https:// www. who. int/ health- topics/ lands lides# tab= tab_1.
4 https:// www. weath er. gov/ mrx/ flood_ and_ flash. 5 United Nations Office for Disaster Risk Reduction.

https://www.who.int/health-topics/landslides#tab=tab_1
https://www.weather.gov/mrx/flood_and_flash
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systems based on high computational approaches, for 
the monitoring and near real-time forecasting (Kirsch-
baum and Stanley 2018; Fayne et  al. 2019; Ngandam 
Mfondoum et al., 2021; USGS 2022a, b, c).

Concerning multi-hazard mapping specifically, the 
Maximum Entropy (MaxEnt) algorithm has been com-
bined with the technique for order of preference by 
similarity to the ideal solution and Mahalanobis distance 
(TOPSIS-MD), to harmonize the probabilistic context 
of multiple natural hazards (Sheikh et al. 2019). This ML 
has also been proven efficient in selecting predictors, 
assessing the degree of model fitting and predicting per-
formance, for combined landslide, erosion/gully erosion 
and flood susceptibility assessment (Javidan et al. 2021). 
Another approach modelled different single hazards 
susceptibility through the simple additive weight (SAW) 
with the Analytical Hierarchy Process (AHP) coefficients, 
to prepare the path to the multi-hazard mapping of land-
slide, rockfall, goaf collapse and soil erosion (Sun et  al. 
2019). Further, the Boruta algorithm has been highly 
proficient in selecting and prioritizing factors per type of 
hazard in the same analysis; and then applying the Ran-
dom Forest (RF) algorithm to train and validate flood, 
landslides and forest fire, to produce multi-hazard sus-
ceptibility map (Pourghasemi et  al. 2020b). Moreover, a 
multiple and comparative learning, (i.e., boosted regres-
sion tree, random forest, support vector machine), was 
envisaged to produce a valid multi-hazard map of flood-
ing, gully erosion, forest fires, and earthquakes (Pouyan 
et al., 2021).

However, most studied locations benefit from accurate 
and up-to-date databases on the occurrence and loca-
tion of geo-hazards. This is not always the case in some 
areas. In addition, the socio-economic component is usu-
ally introduced as settlements (built-up, road), while the 
human dimension itself as the number of residents is not 
exclusively considered.

From the above statements, this study mixes field sur-
vey data and an analyst knowledge-based approach, with 
robust artificial intelligence processing, to predict land-
slide, gully erosion and flash flood distribution, from sin-
gle to simultaneous occurrences. The main rationale of 
this work is to demonstrate how combining AHP to ML 
algorithms in the same modelling process, produces sat-
isfactory performances to map the multi-geo-env hazards 
susceptibility (MGHS) and related human vulnerability. 
Specific goals are the following: i) use the AHP method 
to weigh the factors/predictors per model; ii) compare 
performances of different ML algorithms in accurately 
predicting occurrences on stacked-weighed factors; iii) 
assess the proficiency of a meta-learner in arbitrating the 
best distribution of single and combined geo-env hazards 
from stacked basic learners’ output; iv) predict the human 

direct threats to each and all occurrences from the popu-
lation distribution perspective.

The major novelty of this work, resides in performing 
ML over AHP’s weighed factors, for multi-geo-env haz-
ards modelling. The two have always been used sepa-
rately according to the available literature that has been 
synthesized above, but not in the same modelling pro-
cess, to the best of our knowledge. Furthermore, the pop-
ulation distribution layer is newly introduced in hazard 
multi-analysis.

Dataset and methods
Study area
The study was conducted in the Northern subset of the 
Moungo division (Littoral Region), embedded between 
three volcanic mountains, i.e., Manengouba (2396  m), 
Koupé (2070 m), Nlonako (1822 m), and belongs to the 
Cameroon Volcanic Line (CVL) (Elsheikh et  al. 2014). 
The soils are essentially less evolved volcanic ones known 
as andosols (Gèze, 1942). It is slightly extended over the 
surrounding natural perimeter encompassing adminis-
trative divisions of, Haut-Nkam, Menoua (West Region), 
and Koupé-Manengouba (South-West Region), on the 
edges of the Bamileke Plateaus, which is constantly 
subject to different geo-env hazards (Nguimbous and 
Manguelle, 2010; Wotchoko et  al. 2016; Ndonbou et  al. 
2022). The whole area is inside coordinates, North 4°54’-
5°21’ and East 9°46′30″-10°6’. The main cities covered 
are, Nkongsamba (Moungo’s head of division), Melong, 
Kekem, then partially Santchou and Bangem (Fig. 1).

The Equatoguinean climate dominates the area, with 
eight months of rainfall (mid-March/mid-November) 
averaging 1400  mm/year, while peaks exceed 2000  mm 
in September (Kadjio Feudjio et  al. 2021). Rainfall dis-
tribution impacts annual temperatures, which vary 
between 16 and 23°C, as well as relative humidity which 
varies between 55 and 99%. These climate parameters 
are deeply influenced by altimetry (Kadjio Feudjio et  al. 
2021) and in return, they influence the natural land cover 
distribution. The vegetation comprises degraded for-
est mixed with savannas (tree and grassy) on mountains 
top and hillslopes, forest galleries in valleys and spots of 
agroforestry (Tsewoue et  al. 2020). From the compiled 
district council and national census statistics, about 
288,604 inhabitants live in the studied subset, with an 
average population density of 142.9 per  km2.

Work environment and tools
The processing was conducted alternatively between 
the cloud environment and desktop tools. Google Earth 
Engine (GEE) platform was used for cloud computing 
(Gorelick et al. 2017). Python and JavaScript codes have 
been previously implemented for semi-automatic or fully 
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automatic socio-environmental monitoring and hazard 
susceptibility mapping (e.g., UN-SPIDER 2020; Elnashar 
et al. 2021; Handwerger et al. 2022). A JavaScript coding 
process was been used to select, filter, load, and preview 
the study area and subsequent data, as well as further 
machine learning.

The offline tools are licensed software such as Erdas 
Imagine 2020 version 16.6.0.1366, ArcGIS version 10.8.2, 
SAGA-GIS version 8.0.1, Super Decision Software (SDS) 
version 3.2 and, XLStats version 2020.1.64570. They were 
used for the preparation of factors, statistics and layouts.

Data preprocessing and factors preparation
Susceptibility modelling refers to the spatial prediction 
of a phenomenon by perception and formulating the link 
between the occurrence evidence and the influential the-
matic factors/predictors (Sheikh et  al. 2019). To define 
these predictors and before any operation, each data was 
clipped at the extent of the subset.

Shuttle radar topography mission‑digital elevation model 
imagery and direct layers
Direct layers refer to those prepared in a straight com-
putation by the software. The Shuttle Radar Topography 
Mission-Digital Elevation Model, SRTM-DEM, was the 
only raw data provider of this group of layers. This data 
is freely available worldwide on the website of the United 
States Geological Survey Earth Resources Observation 
and Science (USGS/EROS), and offers a void-filled data 
at a resolution of 1 arc-second, i.e., approximately 30 m.6 
It was mostly preprocessed with SAGA-GIS, to produce 
thirteen (13) raster layers, which are, elevation, slope 
degrees, slope aspect, plan curvature, profile curvature, 
relative slope position, terrain ruggedness index (TRI), 
slope length and steepness (LS), valley depth, drainage 

Fig. 1 Study location inside administrative (a) and altimetry (b) contexts

6 https:// www. usgs. gov/ cente rs/ eros/ scien ce/ usgs- eros- archi ve- digit al- eleva 
tion- shutt le- radar- topog raphy- missi on- srtm-1.

https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1
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density, channel network distance, stream power index 
(SPI) and topographic wetness index (TWI).

Other satellite data and indirect layers
Indirect layers are those prepared through several com-
putations. The Sentinel-2 multispectral instrument 
(S2-MSI) surface reflectance image, was first used to 
perform the land use land cover (LULC) classification. 
In the collection, five cloudiness granules were available 
for the  22nd of December 2021 (Appendixes 1 & 2). They 
were loaded on the GEE interface, and then compiled, 
i.e., merged and stacked, by using the median reducer 
function (GEE 2022). Then, the image was converted 
from 32-bit to 8-bit unsigned integer, before proceed-
ing to the learning process. Four classes of land features 
were defined, i.e., water, vegetation, soil and built-up. The 
Random Forest (RF) algorithm was applied (Number of 
Trees:100, Variables per split:5, Minimum Leaf Popula-
tion:1, Seed:0.5) (Friedman 2001). Then, the Dynamic 
World dataset, which is a 10  m near-real-time (NRT) 
Land Use/Land Cover (LULC) product based on predic-
tions of the Sentinel-2 L1C (Brown et al. 2022),was used 
for cross validation and accuracy assessment. The over-
all accuracy was 87% and the kappa coefficient was 0.82. 
(Appendix 3).

Further, the Shadow-Eliminated Vegetation Index 
(SEVI) was computed, to assess the natural coverage/
bareness, complementarily to the previous vegetation 
class from the RF. This index eliminates the effect of ter-
rain shadow, including the self and cast shadows (Jiang 
et  al. 2019). The algorithm is built around any conven-
tional vegetation index (CVI), such as the reduced simple 
ratio index (RSR) used here, then the shadow vegeta-
tion index (SVI) and finally, the micro-topography cor-
rection factor (f(Δ)). The latter adjusts the CVI and the 
corresponding SVI ratio, to avoid under-elimination or 
over-elimination. This study used, f(Δ) = 0.581, as in the 
original formulation (Table 1).

Regarding the natural land cover, the soil typology layer 
was produced using the basic map (1:1 000 000) available 
(ORSTOM 1965). There are six types of soils depending 
on the altitude and the bedrock, i.e., black humus soils on 
basalts, red to yellowish ferrallisol on basic rock, red to 
yellowish ferrallisol on sediments, oligotrophic organic 
hydromorphic soil, organic gleysol and brown soil on 
basic rock (ORSTOM 1970).7 Next, the soil depth layer 
was prepared from the USDA soil texture categorization, 
known as, the USDA system (Hengl 2018). Version v02 
was used, as it globally describes several textures and 
measures of six different depths (0, 10, 30, 60, 100 and 

200 cm), at 250 m of spatial resolution. However, because 
the study area mixes different materials according to the 
classes present in features of the source code, a combi-
nation was necessary to deduct new intervals of depths, 
with a probability, of class > 200 cm (Table 1).

Another factor is rainfall, which was composed of two 
sources. The first one is the TerraClimate data, which is 
a dataset of monthly climate and climatic water balance 
for global terrestrial surfaces (Abatzoglou et al. 2018). Its 
spatial resolution is about 4  km, all available scenes for 
the year 2021 were exported to the ArcGIS environment, 
and average values were computed. Complementarily, 
records from the rain gauges available at local offices of 
agriculture and livestock were collected, averaged and 
displayed on the TerraClimate data, to create shapefile 
in point features. From there, the mean annual rainfall 
(MAR) layer was created by using the Inverse Distance 
Weighted (IDW) interpolation for landslide and flash 
flooding models. Whilst the modified Fourier Index 
(MFI) was used to create the corresponding layer for the 
gully erosion model since this computing process better 
approximates the kinetic energy of rain over erosion-
prone soils, i.e., R-factor (Arnoldus 1980).

Additionally, some complementary pre-processing of 
the SRTM-DEM was performed in ArcGIS, using the 
spatial analysis set of tools. The fault density layer was 
prepared, following five steps: (i) producing the hillshade 
using surface tool; (ii) displaying the shapefile of exist-
ing faults8; (iii) conditioning the hillshade in fourth dif-
ferent azimuth/altitude angles of shaded combinations 
(i.e., 315°/45°; 200°/50°; 100°/60°; 50°/90°); iv) digitiz-
ing each shading layer to complete the existing shape-
file; v) interpolating shapefile using the line density tool. 
The same shapefile was used as an entry to produce the 
distance-to-fault layer, with the Euclidean distance tool, 
fixing 1500 m as the influence zone, which is assumed to 
be the closest easily affected perimeter according to field 
knowledge.

Another shapefile created from the SRTM-DEM was 
the stream network, using the hydrology tool. After 
producing the flow direction and flow accumulation 
sub-components, the output raster is converted into a 
polyline feature. Because several rivers and small streams 
abound, the values selected were stream ≥ 200. This fea-
ture was used to produce the distance-to-stream layer, 
following a Euclidean distance of 1500 m.

Furthermore, the road density layer was prepared based 
on the existing shapefile,9 also using the line density tool. 
Because the road degradation is very pronounced and 

7 Translated from the original version in French.

8 Layer provided by the Institute of Mining and Geological Research.
9 Provided by the Ministry of Transportation.
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consequently contributes to trigger hazards with multi-
ple potholes on an extended perimeter of 1000 m on both 
sides of the pavement, the distance-to-road was equally 
prepared using the Euclidean distance tool.

In addition, a lithology layer was prepared by using the 
geological base map (1:500 000), scanned, reprojected, 

orthorectified and digitized according to the rocks exist-
ing in the area. Those are, embrechite, syenite, rhyolite-
trachyte and basalt (ORSTOM10 1965 and 1970).

Table 1 Conditioning factors in detail

Factor (unit) Basic expression Type Scale (m): 
original /
resampled

Elevation (m) N/A Continuous 30 / 20

Slope (angle) (°) arctan · f 2x + f 2y
Continuous 30 / 20

Slope (aspect) (°)
270

0 + arctan ·
(

fy
fx

)

− 90
◦ fx
|fy |

Continuous 30 / 20

Plan curvature (m/100) Convex value > 0; concave value < 0; Flat elsewhere Continuous 30 / 20

Profile curvature (m/100) -//- Continuous 30 / 20

Relative slope position Thresholding of Topographic Position Index (TPI), expressed as:
EPixel

ESurrounding

where EPixel is the elevation of the cell, and ESurrounding is the mean elevation 
of the neighbor pixels

Categorical 30 / 20

TRI
√

|X |
(

max2 −min2
)

where X  is the elevation of each neighbor cell to a specific cell (0,0) (m), 
and max and min are the largest and smallest elevations among the nine 
neighboring pixels

Continuous 30 / 20

LS
(

As
22.13

)m

·

(

sin(θ)
0.0896

)n

As is the unit contributing area (m), θ is the slope in radians, and m (0.4–0.56) 
and n (1.2–1.3) are exponents

Continuous 30 / 20

Valley depth (m) N/A Continuous 30 / 20

Lithology N/A Categorical 1:5 00 000 / 20

Fault density [(L1 · V1)+ (L1 · V1)]/⊕ , where:
⊕ = radius;
L = portion of line within ⊕;
V = field value

Continuous 30 / 20

Distance to fault (m) Euclidean distance (two dimensions):

� =

√

[

(x2 − x1)
2+

]

(y2 − y1)
2, where:

∆ = Euclidean distance;
(x2 − x1) = coordinate of  1rst point, i.e., on one side of the fault;
(y2 − y1) = coordinate of  2nd point, i.e., on other side of the fault

Continuous 30 / 20

Soil depths (cm) USDA global model Continuous 250 / 20

Soil types N/A Categorical 1:1 000 000 / 20

Drainage density Same as Fault density Continuous 30 / 20

Distance to stream (m) Same as Distance to fault Continuous 30 / 20

Channel network distance (m) Same as Distance to fault Continuous 30 / 20

SPI As ∗ tanβ Continuous 30 / 20

TWI Loge

(

As
tanβ

)

Continuous 30 / 20

Mean annual rainfall (MAR)- IDW or (MFI)

ZP =

∑n
i=1

(

zi

d
p
i

)

∑n
i=1

(

1

d
p
i

)

 Or MFI =
∑i=12

i=1

P21
P

Continuous 4 000 / 20

Distance to road (m) Same as Distance to fault Continuous 20

Road density Same as Fault Density Continuous 20

LULC Random Forest Categorical 20

SEVI NIR
Red

∗

(

SWIR1mean−SWIR1min
SWIR1max−SWIR1min

)

+ 0.581 ∗ 1
Red

Continuous 20

10 Office de la Recherche Scientifique et Technique d’Outre-Mer.
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Therefore, a total of twenty-four (24) factors were pre-
pared from the collected data (Appendix 4). Table 1 sum-
marizes their expressions based on ArcGIS, SAGA-GIS, 
and additional literature.

Inventory of hazards
The most reliable records are found in annual reports of 
sub-division offices and councils, but without a proper 
Global Positioning System (GPS) location. Some other pre-
vious local events are mapped and documented at the Insti-
tute of Mining and Geological Research (IMGR-Yaoundé), 
but not regularly (e.g., Season, Year, Pace). The two sources 
were combined to schedule fieldwork and geolocate areas/
spots of occurrence. The most reliable records are between 
1997 and 2022. Then, landslide/mudslide affected twenty-
six (26) points causing, 4 deaths, destroying 7 houses and 
making 14 homeless in Nkongsamba in 1997,11 1death, 12 
houses, 103 homeless and 1 road in the district of Kekem 
in 2007 (at Moumé-Bafang), then traffic disruption toward 
Santchou (Ayonghe et  al. 2002; Tchindjang 2013; Ngan-
dam et al., 2021). Gully erosion is permanent on hillsides 
and beside paved roads along steep slopes, with aggrava-
tion and sudden collapses during every rainy season, on 
thirteen (13) known points. However, none of the gully’s 
events has been declared deadly since then, although about 
200 houses have been voluntarily abandoned or evicted by 
authorities; while more than eleven kilometers (11 km) of 
road became increasingly risky,12 especially in Bangem and 
Melong. With regards to flash floods, it happens only dur-
ing the rainy season in marshy pools and lowlands, with 
fifteen (15) records including about 198 abandoned or 
evicted houses recorded mainly in Santchou, Kekem and 
Nkongsamba.

The data once gathered were displayed on raw elevation 
and slope maps, and reclassified into five classes each, to 
allow comparison with the study subset. Then based on 
contour lines, altitudes and slope angle, the same number 
of points as records were created to build the most accurate 
and reliable geodatabase for each hazard (Appendix 5). This 
file has been useful to perform the learning process.

Multicollinearity and co‑(in)dependency test
The multicollinearity among different conditioning 
factors is an indispensable step to assess their co-(in)
dependency. As a basic assumption, a strong linear cor-
relation among the factors indicates redundancy, which 
reduces the model’s accuracy and performance, leading 
to errored results (Dormann et  al. 2013). Among other 
tools, Relief-F, Chi-square statistics, Information, Linear 

Support Vector Machine (LSVM), Variance Inflation Fac-
tor (VIF) and Tolerance coefficient (TOL), are dominant 
in the literature (Mind’je et al., 2020). The two latter, i.e., 
VIF and TOL were used here, as they have been previ-
ously successful in multi-hazard factors’ selection (e.g., 
Javidan et al. 2021). They are expressed as a pair of recip-
rocals, and calculated as follows (O’Brien 2007) (Eq. 1 & 
2):

where, R2 is the coefficient of determination of the regres-
sion between the factor of interest and the other land-
slide conditioning factors. As a rule of thumb to interpret 
these coefficients, when VIF > 5 or 10 and TOL < 0.1, 
there is a multicollinearity obstacle (O’Brien 2007; Dor-
mann et  al. 2013). As such, their values depend on the 
analyst and the goal of the research. In this study, since 
there is a high number of layers, VIF ≤ 3 and TOL ≥ 0.3, 
were proposed as thresholds to maximize the probability 
of excluding any similarity in-between factors, per geo-
env hazard. All factors were standardized, [0–1], before 
proceeding with the test, while the priority in including/
excluding a factor was given to the VIF values.

Core processing
Analytic Hierarchy Process
The Analytical Hierarchy Process (AHP) is a widespread 
multicriteria decision-making (MCDM) tool for vari-
ous types of assessments, especially for geospatial appli-
cations. This approach was introduced in the 1980s by 
Thomas L. Saaty (1980 and 1988). It has been broadly 
used ever since, with successful applications in varied 
geospatial modelling around the world, for instance, site 
suitability selection (e.g., Ngandam Mfondoum et  al., 
2014 and 2019) or hazards prediction (e.g., El Jazouli 
et al. 2019; Nsangou et al. 2022).

AHP proceeds by a semiquantitative and flexible pro-
cess, which involves a matrix-based pairwise comparison 
of different criteria or sub-criteria depending on the ram-
ification of the tree, to solve a specific complex problem. 
The problem is decomposed into a hierarchical structure 
of several levels where, the target, main criteria, sub-
criteria and alternatives are considered. A comparison is 
made between the criteria and the applicable alternatives, 
using the assessment scale from 1 to 9 based on the rela-
tive importance (Saaty 1988). Then, comparison matrices 
are formed and validated by using a coefficient, the con-
sistency ratio (CR), that articulates the compatibility of all 
the parameters involved. The CR value should be, < 0.1, 

(1)VIF =
1

1− R2

(2)Tol =
1

VIF

11 Field information and analyst knowledge.
12 Mungo Division Transport authority.
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before the model is considered valid. This coefficient is 
defined as the consistency index (CI) divided by the ran-
dom consistency index (RI), and they are expressed as 
follows (Saaty 1980) (Eq. 3 and Table 2):

where �max is the largest eigenvalue of the considered 
matrix, and n is number of criteria.

Therefore, using the SDS v3.2, each hazard was consid-
ered as a problem to solve. Consequently, three different 
AHP were performed, to define a weight of evidence cor-
responding to each factor in triggering the targeted geo-
env hazard. From the importance explained by a pairwise 
matrix and the structure of the hierarchy, absolute values 
of weights were obtained for further analysis.

Machine learning algorithmic
Three ML algorithms were used to classify the weighed 
and stacked factors, i.e., Classification and Regression 
Trees (CART; Breiman et al. 1984), Random Forest (RF; 
Breiman 2001) and Gradient Boosting Regression Trees 
(GBRT; Friedman 2002). Then, the Support Vector 
Regression (SVR) ML, was used for a meta-learning of 
the three previous.

The SVR especially is a variant of the support vector 
machine (SVM), and its principle is founded on the pat-
tern’s recognition. As a reminder, SVM constructs hyper-
planes in a multidimensional space separating linear and 
nonlinear samples of different class labels (Cortes and 
Vapnik 1995). Special properties are built for the deci-
sion surface, to ensure high generalization ability of the 
learning. The output should present a separating hyper-
plane or decision boundary, that maximizes the distance 
between these hyperplanes and the classes sample, as 
summarized below (Eq. 4):

where w is the normal vector to the hyperplane and x is 
the input vector. The separating hyperplane is the plane 
u = 0 . The nearest points lie on the plane u = ±1 . The 
margin is thus (Eq. 5):

(3)CI =
�max − n

n− 1

(4)u = w • x − b

(5)m =
1

�w�2

The optimization parameters inside the margin m are 
cost, penalty and gamma (C, ξ , γ).

From the SVR perspective,13 there are three new con-
siderations: an additional tunable parameter epsilon ( ε ) 
which determines the width of the margin m ; support 
vectors which are the points that fall outside rather than 
just the ones at the margin m ; penalty parameter ξ which 
measures now the distance to points outside the mar-
gin m , with the analyst controlling the regularization of 
parameter C. This may allow for nonlinear relationships 
by fitting smooth transformation functions and adjust-
ing deviations between classes of hazard prediction by 
stacked factors. From these principles and functionali-
ties, SVR appeared as a good alternative of metric-based 
meta-learning to combine and adjust CART, RF and GBR 
outputs.

First combination, stacking and sampling
The weighted linear combination (WLC), also known as 
Simple Additive Weight (SAW) (Hwang and Yoon 1981), 
was performed among all standardized factors weighted 
by their AHP coefficient, to obtain the first preview of 
each hazard. The output was reclassified into five classes 
using the Jenks natural breaks method. Then the sam-
pling was conducted for automatic learning using the 
events’ inventory and distributed following a 50/50 ratio 
as shown in Table 3 and Appendix 4.

Therefore, the scaled-weighted factors were stacked 
and reexported to the GEE platform to perform CART, 
RF and GBRT learning.

Further, to run the SVR meta-learning process, other 
stackings were done for each output of CART, RF and 
GBRT, i.e., landslide, gully erosion and flash flood. As 
such, a total of nine (09) SVR were conducted. At the dif-
ference of the basic learners, only the recorded events 
sample was used, for a smoothing process picturing real 
occurrences.

Multi‑geoenvironmental hazard susceptibility (MGHS) model
The final step was the MGHS model. Using a simple lin-
ear combination (SLC), all the hazards were added per 
primary ML algorithm, i.e., CART, RF and GBRT. Fur-
ther, the meta-learning consisted in summing the three 

Table 2 Random consistency index values

n 1 2 3 4 5 6 7 8 9

RI 0 0 0.52 0.89 1.11 1.25 1.35 1.4 1.45

13 https:// towar dsdat ascie nce. com/ suppo rt- vector- regre ssion- svr- one- of- 
the- most- flexi ble- yet- robust- predi ction- algor ithms- 4d25f bdaca 60. Visited 
on September 18, 2022.

https://towardsdatascience.com/support-vector-regression-svr-one-of-the-most-flexible-yet-robust-prediction-algorithms-4d25fbdaca60
https://towardsdatascience.com/support-vector-regression-svr-one-of-the-most-flexible-yet-robust-prediction-algorithms-4d25fbdaca60
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previous SVR outputs to produce the improved MGHS. 
Then, all the results were exported to the ArcGIS envi-
ronment, to proceed with area calculation, hazards asso-
ciation preview, further analysis and layouts.

Human exposure mapping process
Beyond the artificial settlements and vegetation cover that 
involve human impact (road, LULC, SEVI), the number of 
residents has been integrated as the ultimate layer to cross 
with each hazard, and better express the life-threatening 
status. Human exposure is herein defined as the intersec-
tion of a hazard susceptibility map and a spatially distrib-
uted population layer (Bernhofen et  al. 2021). As such, 
population density has been previously used from the set-
tlements’ perspective (e.g., Modugno et al. 2022).

Practically, the population shapefile per locality, was 
constructed in point features from the regional offices of 
the central bureau of the Census and population studies 
(BUCREP 2010), and then interpolated using the IDW 
tool. A simple linear combination (SLC) was performed 
with each output of the SVR. The results were reclassi-
fied to obtain the final classes of hazards’ direct threat on 
human life, i.e., vulnerability.

Performance assessment and comparison of models

– Confusion matrix: The confusion matrix includes 
true positive (TP), false positive (FP), true negative 
(TN), and false negative (FN) categories (Frattini 
et al. 2010). The value calculated from the confusion 
matrix provides useful information on model perfor-
mance and classification accuracy, based on proba-
bilities. In this study, the balanced F-score  (F1-score), 
true positive rate (TPR) and false positive rate (FPR) 
were exploited to assess the performance of each 
learning from the final output (Eq. 6–9).

– Receiver Operating Characteristic: The receiver oper-
ating characteristic (ROC) or success rate curve, is a 
visualization tool which helps to validate the rational-
ity and robustness of a probabilistic model (Pradhan 
2013; Wu et al., 2016). The ROC curve is plotted by 

statistical index value pairs, with the sensitivity or 
TPR on the x-axis and, “1-specificity” or FPR on the 
y-axis. These two values are used as cut-off-depend-
ent metrics, associated with the area under ROC 
(AUC/AUROC) which is the cut-off-independent 
metric for accuracy and efficacy evaluation of predic-
tive model outcomes (Eq. 9):

Figure 2 summarizes the main steps used to complete 
the methodology.

Results
Multicollinearity analysis
Globally, the VIF of different pixel sizes was around 1e5th, 
indicating no collinearity problem among factors, and 
consequently, they could contribute to subsequent mod-
elling processes (Garosi et al. 2019). For landslide, lithol-
ogy recorded the highest VIF, i.e., 2.223, and the lowest 
TOL value, i.e., 0.449. For gully erosion, the soil depth 
appears to be the most adequate factor, with a VIF value 
of 2.649 and a TOL value of 0.377. Then for flash flood, 
the plan curvature factor has the best fitting values to run 
the model, with 2.557 and 0.39 for VIF and TOL, respec-
tively. While these values remained inside the targeted 
thresholds (i.e., VIF ≤ 3 and TOL ≥ 0.3), the relative slope 
position factor was excluded from the flash flood model-
ling, for a high VIF, i.e., 3.078, although a good TOL of 
0.325.

To sum up, all 24 factors have been used in the model-
ling of landslide and gully erosion (Table  4). Contrarily, 
only 18 factors have been used for the flash flood mod-
elling, with the exclusion of the relative slope position 
factor for high collinearity above the thresholds fixed 
(Table  4); while LS, fault density, distance to fault, dis-
tance to road and road density factors are usually not 
integrated with the flood modelling, according to the lit-
erature and confirmed by the analyst knowledge of this 
hazard’s occurrence in the area .

(6)F1 =
2 · TP

2 · TP + FP + fn

(7)TPR =
TP

TP + FN

(8)FPR =
FP

FP + TN

(9)

AUC =

∫

1

0

f (FPR)d(FPR) = 1−

∫

1

0

f (TPR)d(TPR)

Table 3 Sampling distribution for basic learners

Hazard Sample Total

Recorded Generated Both

Landslide 26 26 52

Gully Erosion 13 13 26

Flood 15 15 30
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Pre‑/post‑machine learning importance of conditioning 
factors
The pre-learning importance of factors is considered 
here as the AHP outputs. Whereas the post-learning 
importance refers to the ML explanations of each fac-
tor’s contribution to the model.

The AHP values are shown by Fig.  3. From the ana-
lyst knowledge-based assessment of the study area, the 
rainfall is mainly responsible of all three hazards, with 
the highest value, 1, for all. The lowest coefficients are 
LULC for landslide (0.391) and flash flood (0.296), and 

SEVI for gully erosion (0.346). These values were con-
firmed acceptable by the objectivity test introduced by 
the consistency ratio interval, 0.0209 ≤ CR ≤ 0.0256, 
way below the allowed threshold, 0.1.

Automated learning gives different configurations 
of importance. For landslide susceptibility assess-
ment, elevation has been the dominant factor follow-
ing CART and RF learning, with 44.54% and 6.4%, 
versus rainfall factor (9.71%) according to GBRT learn-
ing. Concerning gully erosion, elevation (48.08%), TRI 
(6.51%) and slope (10.74%) are the three dominant 

Constructing Geo-spatial database of factors

SRTM

Elevation, Slope, Aspect, Plan 
curvature, Profile curvature, 
Relative slope position, TRI, 

LS, Valley depth, Stream 
network, Drainage density, 
Channel network distance, 

SPI, TWI, Fault density, 
Distance to fault

S2-MSI LULC, SEVI

Pedology map 
1:1 000 000

Soil types

USDA system 
soil depths v02 Soils depth

TerraClimate & 
Field records Rainfall

Geology map 
1:500 000

Lithology

Road shapefile Road density,
Distance to road

Hazard field 
inventory

Multicollinearity analysis

AHP for order of preference

WLC with AHP values

First preview of hazard

Jenks natural breaks 

Standardization of factors

Sampling per class

Samples distribution

Susceptibility map 
per hazard and ML

SLC

MGHS Map per ML

Validation with ROC, 
AUC and F1-score 

Population census Population density

SLC

Vulnerability maps

ML
CART, RF, GBRT

SVR

Fig. 2 Flowchart summarizing the used methodology
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factors according to CART, RF and GBRT respectively. 
With regard to flash floods, elevation (26.64%), profile 
curvature (11.73%) and slope (20.78%) have been the 
most impacting factors, according to the same order 
of ML algorithms. CART depicted large gaps between 
the highest and lowest percentages of conditioning fac-
tors, with some values almost nil, i.e., 0.006%, contrary 
to RF and GBRT which showed a progressive difference 
between factors (Fig. 4).

Validation of models using ROC, AUC and F1‑score
The ROC was plotted and the default cut-off value, 0.5, 
was fixed for all the learners. It was completed by analyz-
ing the area under the curve (AUC), which qualitatively 
assesses the prediction accuracy, i.e., the functionality of 
the models. A ROC value closer to 1 at the top left cor-
ner of the graph implies a larger proportion of the AUC 
and suggests that the model is more accurate. In contrast, 
a smaller AUC value indicates a poor accuracy of the 

Table 4 Collinearity of factors

The bold values has been used for all numbers representing the two collinearity metrics used here, i.e., Tolerance (Tol) andVariance Inflation Factor (VIF)

Excl. = layer excluded for a too high VIF (3.078), although a good TOL (0.324); N/A= Not Applied to the model

Landslide Tol VIF Gully erosion Tol VIF Flash flood Tol VIF

Elevation 0.685 1.459 Elevation 0.559 1.786 Elevation 0.413 2.415
Slope 0.699 1.429 Slope 0.679 1.472 Slope 0.391 2.556
Slope aspect 0.866 1.153 Slope aspect 0.875 1.142 Slope aspect 0.893 1.118
Plan curvature 0.871 1.147 Plan curvature 0.878 1.138 Plan curvature 0.39 2.557
Profile curvature 0.808 1.236 Profile curvature 0.806 1.239 Profile curvature 0.515 1.938
Relative slope position 0.472 2.115 Relative slope position 0.689 1.45 Relative slope position Excl Excl
TRI 0.494 2.022 TRI 0.544 1.835 TRI 0.4 2.496
LS 0.79 1.265 LS 0.78 1.281 LS N/A N/A
Valley depth 0.484 2.065 Valley depth 0.543 1.841 Valley depth 0.409 2.44
Lithology 0.449 2.223 Lithology 0.585 1.706 Lithology 0.482 2.073
Fault density 0.808 1.236 Fault density 0.792 1.261 Fault density N/A N/A
Distance to fault 0.835 1.196 Distance to fault 0.834 1.198 Distance to fault N/A N/A
Soil depth 0.6 1.664 Soil depth 0.377 2.649 Soil depth 0.654 1.528
Soil type 0.542 1.842 Soil type 0.387 2.578 Soil type 0.556 1.797
Drainage density 0.548 1.822 Drainage density 0.56 1.783 Drainage density 0.663 1.506
Distance to stream 0.751 1.331 Distance to stream 0.771 1.296 Distance to stream 0.763 1.309
Channel network distance 0.539 1.853 Channel network distance 0.527 1.896 Channel network distance 0.599 1.667
SPI 0.974 1.026 SPI 0.977 1.023 SPI 0.984 1.016
TWI 0.72 1.387 TWI 0.721 1.385 TWI 0.87 1.149
Rainfall-IDW 0.511 1.953 Rainfall-MFI 0.648 1.542 Rainfall-IDW 0.744 1.343
Distance to road 0.59 1.694 Distance to road 0.617 1.618 Distance to road N/A N/A
Road density 0.646 1.546 Road density 0.652 1.532 Road density N/A N/A
LULC 0.91 1.098 LULC 0.891 1.121 LULC 0.933 1.071
SEVI 0.903 1.106 SEVI 0.9 1.11 SEVI 0.908 1.101

Fig. 3 AHP coefficients for each factor per hazard
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model in predicting future occurrences of the phenom-
ena, i.e., single or all hazards (Sun et  al. 2019; Rehman 
et al. 2022). Statistics of the outputs in five classes have 
been used in this section.

At a general first glance, all the ROC are close to 1 
(Fig. 5). For landslide learning, AUC values are between 
[0.967–0.972], with CART recording the lowest value 
and RF the highest one. The AUC values for gully erosion 
learning showed values between [0.976–0.978], with the 
lowest extremity for CART and the highest for RF. While 
for flash flood learning, AUC values reflected the highest 
accuracy, between [0.989–0.991], with GBRT and RF at 
low and high extremities.

Concerning the meta-learner, SVR showed the lowest 
values of AUC for landslide, i.e., 0.964, the highest for 
gully erosion (0.979) and the lowest value same as for 
GBRT, i.e., 0.989. But generally, there are very small dif-
ferences among the AUC values of ML models for each 

geo-env hazard occurrence, while the SVR accuracy and 
performance are the consensual accuracies among other 
learners. When it comes to the MGHS learning model, 
the maximum AUC, 1, was reached by all the classifiers 
including SVR, for all classes.

Moreover, the interpretation of the  F1-score allowed 
to show that single geo-env hazards were assessed high 
enough to be relevant, with basic ML algorithms of 0.86 
for gully erosion and flash flood, and 0.87 for landslide 
(Table  5). The same values have been recorded by SVR 
for gully erosion and landslide but increased to 0.88 for 
flash floods. Concerning the MGHS, values were a little 
lower, between [0.82–0.84] (Table 5).

Spatial distribution and statistical trends of single geo‑env 
hazards susceptibility
A total of twelve (12) maps were derived, i.e., CART-
Landslide, RF-Landslide, GBRT-landslide, SVR-Landslide, 

Fig. 4 Automatically computed importance of factors per hazard and per learning
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CART-Gully Erosion, RF-Gully Erosion, GBRT-Gully Ero-
sion, SVR-Gully Erosion, CART-Flash Flood, RF-Flash 
Flood, GBRT-Flash Flood, SVR-Flash Flood (Fig. 6). Five 
classes of susceptibility were defined, such as “Very Low”, 
“Low”, “Moderate”, “High” and “Very High”. The assess-
ment uses the preview with the main focus on the two lat-
ter classes (Fig. 7).

Landslide mostly affects the western half according to 
the three classifiers. However, the spatial distribution 
trends show more similarity between classes for RF and 
GBRT, than with CART. Further, at least 30% represent-
ing the largest percentage of the area is exposed to “Very 
High” susceptibility according to RF (30.9%) and GBRT 
(31.2%), versus only 21.6% for CART, which learning 
estimated the “High” susceptibility more distributed, i.e., 
over 28.7% of the area. Moreover, summing the two high-
est susceptibility classes gives 50.3% of the area accord-
ing to CART, but only 47.3% and 49.1% for RF and GBRT 
respectively.

Gully erosion on its side appears sparsely distributed. 
All classifiers share five major spots, which are located 
in the North-west, West, South, East and Centre. How-
ever, CART and GBRT properly exhibit the spots at the 
Centre, more than RF does. The “Very High” susceptibil-
ity class represents 15.8%, 18.5% and 20.2% of the area 
according to CART, RF and GBRT respectively, versus 
19.2%, 22.1% and 18% for the “High” class, in the same 
order. In contrast to landslide, these two classes together 

Fig. 5 ROC curves and corresponding AUC values

Table 5 F1-score values

Model Landslide Gully erosion Flash flood MGHS

CART 0.87 0.86 0.86 0.82

RF 0.87 0.86 0.86 0.83

GBRT 0.87 0.86 0.86 0.84

SVR 0.87 0.86 0.88 0.83
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represent less than 50% of the area, i.e., 35%, 40.6% and 
38.2% according to CART, RF and GBRT respectively. 
Then, between 60 and 65% of the area are lowly to mod-
erately prone to gully erosion.

Concerning flash floods, it is demarcated to the 
East half of the study area according to all classifiers. 
The “Very High” susceptibility class occupies 20.9%, 
22.3% and 22.5% of the area for CART, RF and GBRT 

respectively. Whereas 10.6%, 13.8% and 14% represent 
the ratios of the “High” susceptibility class in the same 
order of learners. The total for these two classes is 31.6%, 
36.1% and 36.6%, suggesting that 64% to 69% of the area 
are is lowly to moderately concerned by flash floods.

The overall output of the meta-learner SVR arbitrated 
the spatial distribution of susceptibility per geo-env haz-
ard, by taking the most dominant features according to 

Fig. 6 Single geoenvironmental hazard spatial distribution
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the learning process and with consequences on the per-
centage of areas per class. For landslide, “Very High” 
and “High” susceptibility classes, represent 32.30% and 
15.91% respectively, i.e., 48.21% of the area. Concerning 
gully erosion, 13.73% and 20.99% are the ratios for the 
same order of classes, i.e., 34.72% of the area. Whereas 
for flash floods, 17.31% and 16.10% are the ratios, i.e., 
33.41% of the area.

In addition, discrepancies among classes are widely 
effective for flash floods, but less noticeable for landslide 
and gully erosion. As such, CART-Flash Flood, RF-Flash 
Flood and GBRT-Flash Flood previews, show the larg-
est spatial distribution for the “Low” susceptibility class, 
confirmed by statistics, i.e., 39.37%, 39.92% and 43.47% 
respectively. Whereas, SVR-Flash Flood specifically high-
lights the “Very Low” susceptibility class to be the most 
extended, which is confirmed by its largest percentage, 
i.e., 40.75% of the total area.

Multi‑geoenvironmental hazard susceptibility (MGHS)
Combinations of geo-env hazards were conducted 
according to the following SLC:

where ML refers to the targeted machine learning algo-
rithm. To properly discriminate the different contribu-
tions, computations were conducted for different pairs 
and then for the three geo-env hazards, ML. The outputs 
combination obtained are therefore, “Landslide + Gully-
Erosion”, “GullyErosion + FlashFlood”, “Landslide + Flash-
Flood” and “Landslide + GullyErosion + FlashFlood”, also 
named here as “All”.

The analysis is based on the highest classes of the 
outputs (Figs.  8 & 9). At a glance, the susceptibility of 
combined landslide and gully erosion has the largest 
spatial cover, towards the northern, western and south-
western areas. From the basic ML, they are predicted to 

MGHSML = LandslideML + GullyErosionML

+ FlashFloodML

simultaneously occur over [17.5–24.4%] of the subset, 
with the lowest percentage for CART and the highest for 
RF. Whereas, for SVR, they are estimated to occur over 
21.4% of the subset (Fig.  10). The second obvious com-
bination is the landslide and flash flood susceptibility of 
occurrence, which is most likely to happen in the center, 
western and south-western areas. They are extended 
between [5.3–8.9%] of the subset (Fig.  10), from RF to 
CART for basic ML; while SVR gives the same value as 
RF, i.e., 5.3% of the subset. The “GullyErosion + Flash-
Flood” susceptibility combination is less spatially dis-
tributed, mostly at the center area, with a south-to-west 
expansion. The percentages vary between [1.2–3.4%], 
from RF to CART for basic ML; while SVR estimates that 
to 1.1%. At last, the combination of all geo-env hazards 
shows at first sight the same distribution patterns as the 
latter, with percentages [0.6–1.4%], from RF to CART/
GBRT; whereas SVR estimates this ratio at 0.7%.

Vulnerability status
Outputs for the vulnerability analysis are presented here 
as heatmaps, which have been suggested to better sup-
port rapid response or mitigation for hazards (Handw-
erger et al. 2022). Generally, the population distribution 
matched the hot spots of each geo-env hazard occurrence 
(Fig. 11). This may lead to assume that high human con-
centrations are globally the most exposed. This assump-
tion has been verified in the main city of Nkongsamba, 
where an extract of the urban perimeter shows a con-
cerning exposure of population to studied geo-hazards.

At the center of this urban sub-area, vulnerabilities to 
landslide and gully erosion are expanded in the South-
West/North-East direction (Fig.  11). The sum of “Very 
High” and “High” hot-spot classes, represents 36.5% 
of the extract for landslide, and 28.95% for gully ero-
sion (Fig.  12). However, the spatial distribution of the 
two selected classes is inverted for the vulnerability to 
these two geo-env hazards. While the vulnerability to 

Fig. 7 Areas of single geoenvironmental hazard per learner



Page 16 of 27Mfondoum et al. Geoenvironmental Disasters           (2023) 10:22 

Fig. 8 MGHS distribution per combination of occurrence – Only the highest value is highlighted here 
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Fig. 9 MGHS summarized distribution – highest values are highlighted; lowest ones are combined into one class 

Fig. 10 MGHS areas per learner. Ratios are calculated from the highest value area that highlight probability of occurrence on one hand, and the sum of 
“Very Low” to “Moderate” areas 
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flash flood is highlighted in the southern center of the 
extract, at the complete opposite of the two previous, 
although still South-West/North-East orientated. The 
total area of flash floods vulnerability for the “Very High” 
and “High” hot-spots classes, represents 31.02% of the 
extract. Eventually, the most vulnerable spaces are widely 
expanded in the South-West/North-East direction, with 
a more important visual matching for both landslide and 
gully erosion, versus smaller spots of the three simulta-
neous vulnerabilities in the south. The “Very High” and 

“High” for all of them cumulate a total of 32.54% of the 
urban sub-area. The three mainly concerned localities are 
Nkongsamba, Baréock and Baré (Fig. 11).

Discussions
Inference from the findings and comparisons to previous 
studies
The weighing of factors with the AHP forecasted their 
contribution per geo-env hazard’s model, differently from 
usual empirical simple (factor * 1) or percentage (factor 
* 1/100) weighing in a raster calculation. For simultane-
ous occurrence, the same factor is assumed to not affect 
two or more, recorded or predicted geo-env hazards 
at the same level. Rather, the level of impact in trigger-
ing or aggravating may vary from nil (excluded) to fully, 
with different values. Moreover, with the usage of SLC in 
a single geo-env model and multi-hazards analysis, that 
impact always varies as previously proven (Javidan et al. 
2021; Nsangou et  al. 2022). As side mention, the sea-
sonality of occurrences based on fieldwork and existing 
records state that landslides and flash floods only hap-
pen during the rainy season. While gully erosion takes 
place in any season, as they are more related to topog-
raphy, lithology, and changes in human land use impact-
ing land (vegetation) cover, and then easily triggered or 

Fig. 11 Vulnerability heatmap using SVR outputs for the whole subset and the extract of Nkongsamba

Fig. 12 Ratios of vulnerability for the extract of Nkongsamba. The 
class entitled “Other” includes the “Very Low”, “Low” and “Moderate” 
classes 
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emphasized by rainfall, rejoining previous remarks (Aber 
et  al. 2010). Figure  13 illustrates some recent events in 
the area.

Further, performing basic ML algorithms over AHP-
weighed and stacked factors is another novelty of the 
proposed method. The advantage of this approach is the 
agreement of most ML for each model, then a poten-
tial accuracy improvement for a single modelling pro-
cess, since each geo-env hazard susceptibility is highly 
dependent on the spatial distribution of real occurrence 
while including the importance of every weighed factor, 
according to an intelligent automatic process of detec-
tion. As such, there was a global spatial agreement of 
basic learners, i.e., CART, RF and GBRT per geo-env haz-
ards, supported by values of AUC and  F1-score, higher 
than those obtained by Sheikh et al. (2019) by using the 
TOPSIS-MD, TOPSIS, Simple Additive Weight (SAW), 
and by Javidan et  al (2021) by using MaxEnt. Likewise, 
probability of occurrence of pairs geo-env hazards is 
always higher than all at the same time, in accordance 
with the results obtained by Pourghasemi et  al (2019), 
who assessed floods, earthquakes, and landslides.

Furthermore, introducing a regression meta-learning 
process over stacked basic learners’ outputs to assess 
the spatial trends of geo-env hazards of occurrence, bet-
ter displays spatial agreement than single learning. The 
results obtained and values of validation tools (AUC, 
 F1-score) for SVR, are the same or higher than those 
recently obtained by Bordbar et al (2022), who combined 
ensembles learning and meta-heuristic techniques to 
flood, landslide and Earthquake occurrence.

At this point, a complementary validation of the basic-
learner/meta-learner approach might be important, in 
addition to AUC and  F1-score. Since SVR is assumed to 
arbitrate, improve and adjust the best spatial and statisti-
cal distributions of the CART, RF and GBRT in each case, 
likewise, the highest correlation of a basic learner with 
the meta-learner will indicates, the contribution and the 
reliability of the first to the second. Then, a correlation 

analysis was conducted on the classes value using the 
Spearman coefficient. Overall, the correlation coefficients 
are very high ( 0.921 ≤ ρ ≤ 0.985 ) (Fig.  14). Specifically, 
RF has the highest reliability to predict single geo-env 
hazard [ 0.933 ≤ ρ ≤ 0.985 ]. Whereas GBRT is equally 
performant as RF in mapping flood with ( ρ = 0.933 ) 
and the highest proficiency when it comes to the MGHS 
modelling ( ρ = 0.933 ). Then, there are different method-
ology options in the North-Moungo perimeter hazards 
study, and the analysis may select one of these learning 
processes, depending on the goal or accuracy, to reduce 
the computation length and steps.

In addition, geo-env hazard occurrence was predicted 
over all land covers, including vegetation (See Fig. 4). One 
logical explanation is that, topography (elevation, slope 
steepness), combined to volcanic lithology and pedol-
ogy (less evolved soils; Gèze, 1942), globally impacts the 
landscape instability, more than the vegetation does. This 
has been highlighted and confirmed by the importance 
of factors analysis (See Fig. 6). Whereas on another hand, 
although afforestation is most of the time an important 
and suggested action for landslide, erosion and flood 
control, the vegetation composition of the area, which 
transits from degraded forest to shrubs and grasses 
savannas, deeply impacts the susceptibility of occurrence 
for each cover. Matter of fact, it has been previously dem-
onstrated that in a space with mixed vegetation patterns, 
the geo-env hazards gradient of occurrence accordingly 
varies (e.g., Miles and Swanson 1986; Carone et al. 2015). 
As such, areas covered by grasses and herbs will be more 
affected, than those covered by shrubs and trees.

Another consideration is the spatial similarities pointed 
out on single susceptibility maps, between landslide and 
gully erosion expansions than with flash flood are to be 
examined (See Fig.  6). These trends were empirically 
proven in previous studies (e.g., Sun et  al. 2019), and 
have direct implications on MGHS maps, with the larg-
est space affectation to the couple “Landslide + Gully 
Erosion” and “Landslide + Flash Flood”, than “Gully 

Fig. 13 Sampled illustrations. From left to right: Road National-5 collapsed after a rainfall-triggered landslide in Kekem (October 2007) (Balla et al. 2013); 
landslide in Nkongsamba, near administrative area sector-1 (September 2022); another section of Road National-5, flooded and collapsing in Santchou, 
following the overflows of the river Elienti after a huge rainfall (September 2020) (http:// www. camer oon- info. net/ artic le/ camer oun- inond ation- la- circu 
lation- est- pertu rbee- sur- la- route- santc hou- dscha ng-a- la- suite- de- 381012. html); houses and road flooded in Nkongsamba, sector Massa Ngah 
Junction-Market “C” after a huge rainfall (September 2022) (http:// score s2000. info/ 2020/ 09/ grand es- inond ations- et- crues- excep tionn elles- sur- certa 
ines- zones- de- la- ville- de- nkong samba. html) 

http://www.cameroon-info.net/article/cameroun-inondation-la-circulation-est-perturbee-sur-la-route-santchou-dschang-a-la-suite-de-381012.html
http://www.cameroon-info.net/article/cameroun-inondation-la-circulation-est-perturbee-sur-la-route-santchou-dschang-a-la-suite-de-381012.html
http://scores2000.info/2020/09/grandes-inondations-et-crues-exceptionnelles-sur-certaines-zones-de-la-ville-de-nkongsamba.html
http://scores2000.info/2020/09/grandes-inondations-et-crues-exceptionnelles-sur-certaines-zones-de-la-ville-de-nkongsamba.html
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Erosion + Flash Flood”. As a consequence, landslide is to 
be ranked as the first danger, followed by gully erosion 
and flash flood. Likewise, the differences among single 
susceptibility maps, confirm not only the robustness of 
the model in accurately separating/connecting their areas 
of occurrence, but also the spaces needing more atten-
tion for the implementation of control/protection tools 
specific to each geo-env hazard.

From a spatial-scale viewpoint, it has been stated that 
multi-hazard susceptibility assessments are more effi-
cient on larger areas (small scale), while multi-hazard 
risk assessments are practical at the site scale and on an 
event-based scheme (Motamedi and Liang 2014). This 

has been verified with the vulnerability assessment. From 
the extract of Nkongsamba, the population vulnerabil-
ity to each geo-env hazard shows three different extents. 
But when it comes to simultaneous exposure, landslide 
and gully erosion visually represent a higher direct risk 
of occurrence, while there is a spatially and statistically 
small exposure of the population to both, plus flash flood 
at the same time. The outputs of population exposure 
support the idea of a one-per-one vulnerability analysis, 
so as not to neglect a geo-env hazard impact on the pop-
ulation (e.g., flash flood vulnerability in the South-Center 
of Nkongsamba), when focusing on the other that shows 

Fig. 14 Correlation between meta-learner and single learners
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a different spatial distribution (e.g., landslide and flood 
vulnerability in the northern center of Nkongsamba).

Limitations of the study
Accuracy of the inventory was the first obstacle to build-
ing the geodatabase. In written reports, there are a lot of 
gaps in the inventories that lack a systematic follow-up. 
This certainly leads to some misanalysis if the disaster 
has not been exactly located, as well as different devia-
tions in the spatial density distribution. Then, because 
the existing events are, for some, inaccurately distrib-
uted, the sampling had to be completed by creating new 
points based on environmental similarities than real 
event occurrences, according to the analyst’s knowledge 
of the study area, before proceeding to the learning. Con-
sequently, we were not also able to assess the accuracy in 
terms of the deviation between the real and the estimated 
location of the event.

Moreover, most satellite ready-to-use geodatabases of 
natural hazards are not extended everywhere or have not 
considered the study subset as exposed. For instance, a 
detailed landslide geodatabase exists on the USGS web-
site, but only for the United States, while we were also not 
able to access the global landslide susceptibility prepared 
by Felsberg et  al (2022), as well as the global sensitiv-
ity index proposed by Van Natijne et al (2022). Another 
example is the global soil erosion modelling (GloSEM) 
proposed by Borrelli et al (2017), using the Revised Uni-
versal Soil Loss Equation (RUSLE), but our request form 
was not answered. As a last illustration, the global flood 
database is more general and targets very large areas 
which do not include the Moungo’s studied subset of the 
CVL as (enough) exposed. This may find an explanation 
in its small scale (continental), based on MODIS imagery 
which is coarse.14 The availability of such data would have 
been helpful to conduct a proper accuracy assessment of 
each classifier, based on the error matrix, as a plus to the 
process validation.

Outlooks and local mitigation orientations
The main technical activity envisages the direct inter-
actions between pairs of geo-env hazards, as well as all 
together. However, this study has not considered the 
aspect of their direct chronological occurrence, as well 
as their (spatial, mechanical) relationship, i.e., one could 
trigger the other(s). For instance, on a flow continuum 
scale and under heavy rainfall, the usual sediment trans-
port of a river’s/stream’s flow, can quickly escalate a flash 
flooding, that in its turn, will trigger huge debris flow, 
i.e., mudslides/landslides.15 It is more common that gully 

erosion increases the risk of flooding (Ionita et al. 2015), 
whereas flood precedes and triggers landslides (Mot-
agh et al. 2020). Therefore, their mechanical connection 
needs then to be established in a fully different modelling 
process.

Other future activities involve supporting the cit-
ies’ council to build a flexible and updateable database 
of local disasters. This includes the exact geolocation of 
different events, with instant mapping, to complete the 
reports and avoid potential misanalysis or other biases. 
Practically, mitigation actions should be adapted to the 
highest scale, i.e., local context, more than the regional 
one. Based on the case of Nkongsamba, the purpose 
of mitigation is to properly and efficiently support the 
efforts of the Department of Civil Protection (DCP)16 in 
the actions to prevent disasters. Among others, the most 
used is the population eviction from sites judged prone 
to disasters (hillslopes, marshy lowlands, etc.). Whereas, 
structures, documents and conventions such as the 
National Observatory of Hazards (ONR) and National 
Plan of Contingency (PNC) (MINATD 2007). This should 
be preceded or supported by a proper mapping integrat-
ing all the variables used in this study or even more at the 
city scale, then, stacked/joined to the urban planning. 
Unfortunately, the process is not harmonized and has 
not been set as mandatory for the councils, in such a way 
very few of them are moderately ready to face the occur-
rence of disasters.

Above all, the scope of this study has been to produce 
visual support for policymakers, in reducing losses and 
damages, building resilience and targeted mitigation 
actions with a more explicit focus on populations, their 
health and livelihoods (e.g., forecasting, warning system, 
relocation) (UNISDR 2015b). This is challenging at the 
national scale, i.e., Cameroon, considering the very var-
ied panorama of geo-env hazard risks and implications 
requiring details for efficient management (Bang 2022).

Conclusion
Susceptibility mapping is a fundamental tool for disas-
ter management and planning development activities in 
hilly regions of tropical and subtropical environments. 
This study has proposed to combine AHP with ML algo-
rithms, to produce better performances in building a tool 
named the multi-geoenvironmental hazards susceptibility 
(MGHS), as well as assessing human vulnerability. Twenty-
four factors were selected to maximize the accuracy, all 
were used for landslide and gully erosion modelling, while 
only eighteen were integrated into the flood modelling 
according to the multicollinearity analysis (VIF and TOL) 

14 https:// global- flood- datab ase. cloud tostr eet. ai/# inter active- map.
15 https:// www. usgs. gov/ progr ams/ lands lide- hazar ds/ lands lides- 101. 16 Ministry of Territorial Administration and Decentralization (MINATD).

https://global-flood-database.cloudtostreet.ai/#interactive-map
https://www.usgs.gov/programs/landslide-hazards/landslides-101
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and the literature review. Based on the validation of ROC 
trends, AUC and  F1-score, the model demonstrates a cer-
tain robustness. The approach of using three single learn-
ers, CART, RF and GBRT, as well as a meta-learner, i.e., 
SVR, has also been beneficial to assess the most dominat-
ing trends. Whereas, the MGHS tool stands for different 
combinations of two or three simultaneous occurrences. 
Nevertheless, with the limitations related to this study, 
such as, the location of some events or the non-coverage 
by internationally reliable satellite geodatabases for a com-
plementary validation, accuracies record of the outcomes/
outputs suffers drawbacks and caveats that are still in work 
to be addressed. Overall, based on the findings, the process 
of weighing factors before learning has been beneficial to 
avoid the arbitrary preeminence of one on another. Like-
wise, and compared to studies based on ensemble learning, 
SVR demonstrated the ability to better predict multi-geo-
hazards, according to its regressive process and using sam-
ples of real events, all of which make it testable for many 
other applications. In addition, by integrating the popula-
tion density layer at last, the result of the urban sub-area 
of Nkongsamba clearly stated that the space planning did 
not previously take the risk of geo-env hazards, explaining 
a predicted large human exposure. Since the inhabitants 
are constructing everywhere, they are susceptible to dis-
asters and vulnerable to death or eviction. Future planning 
is encouraged to imperatively integrate the geo-env hazard 
aspect, to prevent all inconvenience and threats to locals.

Appendix 1: Sentinel2 granules information sorted 
by recording time

Granule Full Identification Time

S2B_MSIL1C_20211222T093319_N0301_R136_
T32NNM_20211222T113237

09:33:19

S2B_MSIL1C_20211222T093319_N0301_R136_
T32NPL_20211222T113237

09:33:19

S2A_MSIL1C_20211220T094411_N0301_R036_
T32NNM_20211220T113438

09:44:11

S2A_MSIL1C_20211220T094411_N0301_R036_
T32NNL_20211220T113438

09:44:11

Granule Full Identification Time

S2B_MSIL1C_20211222T093319_N0301_R136_
T32NNL_20211222T113237

09:49:22

The sensing orbit direction is descending.

Appendix 2: Sentinel2 bands information

Name Range (µm) Bands 
(Resolution/m)

Coastal aerosol 0.421—0.457 B1(60)

Blue 0.439—0.535 B2(10)

Green 0.537—0.582 B3(10)

Red 0.646—0.685 B4(10)

Red_edge1 0.694—0.714 B5(10)

Red_edge2 0.731—0.749 B6(10)

Red_edge3 0.768—0.796 B7(10)

NIR wide 0.767—0.908 B8(10)

NIR narrow 0.848—0.881 B8A(20)

Water vapor 0.931—0.958 B9(60)

Cirrus 1.338—1.414 B10(60)

SWIR1 1.539—1.681 B11(20)

SWIR2 2.072—2.312 B12(20)

Appendix 3a: Validation error matrix

Water Open 
Vegetation

Built‑up Soil Total

Water 28 0 0 2 30
Open Vegetation 0 75 0 0 75
Built-up 0 1 33 16 50
Soil 0 3 2 33 35

Appendix 3b: Consumer’s accuracy

Class Value

Water 1
Open Vegetation 0.95
Built-up 0.94
Soil 0.625
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Appendix 4: The conditioning factors map from original/unscaled values
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Appendix 5: Samples distribution for the learning process per geoenvironmental hazard
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