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Abstract 

Introduction The current research investigates into the application of various thunderstorm indices to predict severe 
thunderstorm occurrences during the monsoon season across four distinct regions in India. Methods: The study 
assesses the prediction model’s efficacy using various skill scores and the Weather Research and Forecasting (WRF) 
model has been integrated for 30 h with double moment microphysics scheme NSSL-17 which accurately reproduces 
vertical and meteorological measures.

Objective Furthermore, it investigates fifteen thunderstorm indices derived from the ERA5 dataset to identify 
the most effective index for forecasting severe thunderstorms.

Results The results indicate that combining thunderstorm indices with skill scores, such as the Heidke Skill Score 
and True Skill Statistic, enhances the accuracy of severe thunderstorm predictions in the Indian monsoon season. The 
accurate predictions rely on determining optimal thresholds for each index. The study emphasizes the importance 
of using multiple indices rather relying solely on single measure for predicting severe thunderstorms. Advanced 
indices like the Energy Helicity Index (EHI) and Supercell Composite Parameter (SCP) perform well in forecasting 
extreme severe thunderstormsdue to their strong reliance on wind shears. The EHI (> 1), and SCP (≥ 3.5), STP (≥ 1.2) 
along with low SRH at 3 km (100  m2/s2), indicated no evidence of helicity or tornado activity during the event. On 
the other hand, the CAPE, K Index, and VT Index demonstrate robust predictive capabilities for non-severe category 
thunderstorms.

Conclusions Integrating numerous thunderstorm indices improves meteorologists’ forecasts, ensuring public safety.
Based on this work, future research can improve severe weather forecasting models’ accuracy and reliability.

Keywords Thunderstorm indices, WRF–ARW , Lightning, Optimal threshold, Model Skill Score

Introduction
Thunderstorms, being accompanied by intense lightning, 
hails, and extreme rainfall causes heavy loss of life and 
property. (Yair et al. 2010, 2020). The vertically produced, 
fully matured cumulonimbus clouds are considered as 
thunderstorm cells, with moisture, a lifting mechanism, 
and atmospheric instability serving as fundamental con-
ditions for their creation (Doswell 1987). The typical 
life duration of a thunderstorm is 1–12 h, and its spatial 
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reach is only a few kilometres (Kunz 2007) which cover 
very less geographic and temporal region and make it dif-
ficult to forecast and predict (Anquetin et  al. 2005; Das 
2015). According to statistics, lightning is responsible 
for about 9% of natural hazard-related deaths in India. 
(Siingh et al. 2014; Yadava et al. 2020). The highest num-
ber of thunderstorms occur in the pre-monsoon months 
i.e., March, April, May, and early June. (Albrecht et  al. 
2016; Das 2017; Mondal et  al. 2022; Saha et  al. 2017). 
The intensity of the thunderstorms are severe (Hod-
dinott 1986; Marsham et al. 2013) over India due to the 
topography (Barthlott et  al. 2006; Mushtaq et  al. 2018). 
The basic criterion required for the formation of thun-
derstorms were outlined by many researchers (Mapes 
and Houze Jr 1993; Orville 1965). For decades, thermo-
dynamic and kinematic parameters have been designed 
to quantify the thunderstorms formation (Guerova et al. 
2019; Haklander and Van Delden 2003; Kaltenböck et al. 
2009; Kunz 2007) over worldwide and India (Bondyopad-
hyay and Mohapatra 2023; Bondyopadhyay et  al. 2021; 
Mukhopadhyay et  al. 2003; Sahu et  al. 2020; Umakanth 
et al. 2020). The air mass’s convective characteristics and 
indices indicate thunderstorm potential (Stone 1985). 
Many research examined the effectiveness of indices gen-
erated from observed vertical profiles for thunderstorm 
prediction, (Fuelberg and Biggar 1994; Huntrieser et  al. 
1997; Johns and Doswell III 1992; Schultz 1989; Wilson 
and Mueller 1993).

The prediction and forecasting of thunderstorms are 
one of the most challenging tasks because of their spa-
tial and temporal size (Brooks and Wilhelmson 1992) 
and also due to their physical and inherently nonlinear 
behaviour. (Litta and Mohanty 2008; Schultz 1989). The 
Weather Research Forecasting (WRF) model designed 
for both atmospheric research and forecasting applica-
tion (Skamarock and Klemp 2008) which provide the user 
with the flexibility to change the horizontal and vertical 
resolution and domain selection. The modeling approach 
to forecast a thunderstorm required some appropriate 
physical parameterization schemes and variables (Bondy-
opadhyay and Mohapatra 2023; Rajasekhar et  al. 2016). 
The demand for thunderstorm forecasting is steadily 
growing (Chaudhuri et al. 2015; Huang et al. 2022). The 
numerical modeling is one of the methods that have been 
used widely all across the world. Currently, the major-
ity of meteorological forecasts are made using data from 
the NWP model combined with accessible observations 
(Choudhury et  al. 2020; Dhawan et  al. 2008; Robinson 
et al. 2013; Tyagi et al. 2011). Thunderstorm indices are 
often used for convection forecasting for many decades. 
The ability of a model to forecast thunderstorm events 
needs to be assessed and improved by employing thun-
derstorm indices derived from model and observational 

datasets (Gubenko and Rubinshtein 2017; Mukhopad-
hyay et al. 2003; Tajbakhsh et al. 2012).

The prerequisites for a severe thunderstorm are mois-
ture, instability, lift, significant wind speeds, and directed 
storm relative wind shear (Das and Chaudhuri 2014). The 
indices developed to assess atmospheric static stability 
were based on the vertical displacement of a hypothetical 
air "parcel" of very small dimension, and an entire atmos-
pheric layer of some prescribed isobaric thickness (Lamb 
and Peppler 1985; Peppler 1988). Up until the deployment 
of high resolution non-hydrostatic mesoscale models 
starting in 2000, all forecast techniques were dependent 
on the estimation of stability in terms of indices. In order 
to prepare an overview of the potential thunderstorm 
spectrum and a synopsis across broader regions, ther-
modynamic and kinematic vertical information in the 
troposphere is frequently brought together using param-
eters generated from radiosonde and numerical weather 
prediction model data (Kaltenböck et al. 2009; Majumdar 
et  al. 2021). Over the past 40  years, numerous "indices" 
for quantitatively evaluating tropospheric static stability 
have been suggested in the literature or used in weather 
forecasting schemes as tools for identifying or predict-
ing convective weather (Powers et al. 2017; Grieser 2012; 
Miller 1967). Some of these indices like, Shear-CAPE 
(Markowski et al. 1998), storm-relative helicity, (Thomp-
son et  al. 2004), Significant Tornado Parameter, (Ras-
mussen 2003), low level shear, K index (George 2014), 
Total–Total (TT) index (Miller 1972), Convective Avail-
able Potential Energy (CAPE) (Moncrieff and Miller 
1976), (Johns et al. 1993) and Energy–Helicity index have 
been used in this study. While evaluating the likelihood 
of thunderstorms, meteorologists immediately evaluate 
stability indices and competence scores (Chaudhuri and 
Middey 2012; Sahu et al. 2020; Tyagi et al. 2011). Numer-
ous researchers have made substantial efforts to predict 
thunderstorms using stability indices and to evaluate 
their success using skill scores (Kulikov et al. 2020). The 
advantages and disadvantages of the Critical Success 
Index, a commonly employed metric for assessing skills, 
were comprehensively analysed in the context of evalu-
ating thunderstorm forecasting capabilities (Schaefer 
1990). The efficacy of different skill scores in the pre-
diction of rare events, specifically tornadoes and flash 
floods, was examined through the analysis of contin-
gency tables (Doswell et al. 1990). Previous research have 
shown the use of skill score to find the optimal threshold 
and test the thunderstorm indices.

(Haklander and Van Delden 2003; Kunz 2007; Mukho-
padhyay et al. 2003; Sahu et al. 2020).

The current study intends to assess the abilities and 
effectiveness of various thunderstorm indices in predict-
ing thunderstorms of varying intensity. This also provides 
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some helpful understanding of the properties of the pre-
convective settings that are essential for the development 
of thunderstorms. Despite the existence of several cur-
rent, complex dynamical and statistical models, there is 
still a need for precise thunderstorm predictions that are 
time and location specific (Kunz 2007). The performance 
of thermodynamic indices varies greatly from one loca-
tion to another. It is possible that an index and its thresh-
old that are determined for one site won’t be applicable 
to another. In addition, forecasters are unsure whether 
to issue a thunderstorm warning even after obtaining the 

indices. This study focused on the thunderstorm indices 
time series analysis and ERA5 reanalysis dataset derived 
from the model data and observational data along with 
different model skill score which has been tested for all 
the indices over all the case studies. The Paper is organ-
ized as follows. In "Data and methodology" section, Data 
and methodology has been described including the brief 
discussion of study domain. Section  "Results and dis-
cussion" are presented the results and discussion of the 
study. Some concluding remarks are introduced in the 
"Summary and conclusions" section.

Fig. 1 WRF model double nested domain and topography (m), horizontal resolution are D01-9 km and D02-3 km resolution over a Udaipur, 
Rajasthan (11 July 2021), b Surendranagar, Gujarat (04 June 2021), c Hooghly, West Bengal (07 June 2021), & d Raygada, Odisha (24 June 2020)
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Data and methodology
Study domain
The four thunderstorm cases have been chosen from 
different region of India during themonsoon season 
for this study. Figures 1 and 2 shows the model domain 
resolution with topography feature of the region and 
synoptic condition during the event occurrences respec-
tively. According to the IMD report for 2021, light-
ning and thunderstorms occurred in Rajasthan during 
pre-monsoon, monsoon, and post-monsoon on the 

following dates: 12, 22, and 23 March; 11, 13, and 14 July; 
31 August; 2, 6,7,21, 22, and 28 September; 18 Octo-
ber; and 48 individuals died as a result of the extreme 
weather. 58 individuals died in West Bengal on the 11, 
25, 27 May; 5, 7, 10, 12, 13 June; 2 August; 26 Septem-
ber. The Extremely Severe Cyclonic Storm Tauktae (14 
May to 19 May) crossed Saurashtra coast on 17 May, kill-
ing 144 people from western India’s Kerala in the south 
to Gujarat in the northwest. More than 780 people died 
as a result of thunderstorms and lightning in different 

Fig. 2 Cloud Brightness Temperature (K) over the domains, 0000 UTC, 1200 UTC using INSAT-3DR and lightning flash counts using ISS-LIS
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regions of the country. Among these, 213 deaths from 
Odisha, 156 deaths from Madhya Pradesh, 89 deaths 
from Bihar, 76 deaths from Maharashtra, 58 deaths from 
West Bengal, 54 deaths from Jharkhand, 49 deaths from 
Uttar Pradesh, and 48 deaths from Rajasthan were nota-
bly reported. Table 1 provide the details of the thunder-
storm cases. The cases have been chosen based on the 
India Meteorological Department report and real time 
condition checked by using INSAT-3D and International 
Space Station—Lightning Imaging Sensor (ISS-LIS) satel-
lite imageries.

WRF model
The numerical weather prediction model Weather 
Research Forecasting (WRF) model version (4.0.3) has 
been used for this study (Skamarock and Klemp 2008; 
Skamarock et  al. 2021). The WRF model is mesoscale 
weather prediction model (Skamarock et  al. 2019). The 
microphysics scheme that has been used for this study is 

NSSL-17 (Huang et al. 2022). Table 2 provides the model 
configuration and Table  3 provides the list of physical 
parameterization schemes used in the study.

Data used
NCEP-FNL The WRF model has used NCEP-FNL data 
with 0.25° × 0.25° resolution as an initial and boundary 
condition  NCEP GDAS/FNL  (2015). This data is pre-
pared by using Global Data Assimilation System (GDAS) 
and Global Telecommunications System (GTS) for every 
six hours. The NCEP-FNL is the final product after using 
Global Forecast System (GFS) data (NCEP GDAS/FNL 
0.25 Degree Global Tropospheric Analyses and Forecast 
Grids, 2015).

ERA5 ERA5 gives hourly estimates of many atmos-
pheric, land, and oceanic climate variables. The data 
cover the Earth on a 30 km grid and resolve the atmos-
phere utilising 137 levels from the surface to 80  km. 
Two different level of reanalysis datasets downloaded 
from the ECMWF: ERA5 hourly data on single lev-
els (10 m—U component of wind, 10 m—V component 
of wind, 2  m dewpoint temperature, 2  m temperature, 
CAPE, K Index, Total Totals Index) and ERA5 hourly 
data on pressure levels (U component of wind, V com-
ponent of wind, Relative Humidity, Temperature) with 
0.25 degree of resolution respectively. The ECMWF’s 
fifth generation global climate and weather reanalysis 
is known as ERA5. Model data and global observations 
are combined through reanalysis using physics to pro-
vide a complete and consistent dataset. Every few hours 
(12 h at ECMWF), numerical weather prediction centres 
employ data assimilation to combine an earlier forecast 
with fresh observations in an efficient manner. This pro-
cess results in a new analysis, or best estimate of the state 
of the atmosphere, from which a new and more accurate 
forecast is generated. The datasets are available in GRIB 
and NetCDF-4 format (Hersbach et  al. 2019). This data 
has been used to evaluate the model output. The ERA5 
reanalysis dataset, while widely utilised and valuable for 
various applications, also possess a limitation in terms of 
its spatial resolution. Specifically, the data provided by 
ERA5 is available at a resolution of 0.25 degrees.

Table 1 Study of thunderstorm events with total number of lightning flash count over the inner domain using ISS-LIS

Events Date Datasets Flash counts (number) Box selection

Gujarat 04 June 2021 ISS-LIS 333 in 16 orbits 22.0N 24.0N 71.0E 73.0E

Odisha 24 June 2020 ISS-LIS 16 in 16 orbits 20.0N 22.0N 84.0E 86.0E

Jaipur 11 July 2021 ISS-LIS 244 in 16 orbits 24.5N 26.5N 71.5E 73.5E

Hooghly 07 June 2021 ISS-LIS 293 in 16 orbits 20.5N 22.5N 87.5E 89.5E

Table 2 Summary of WRF model configuration

Parameter Details

WRF version 4.0.3 version

Spatial resolution 9 and 3 km

Model integration time 24 Hr

Time step 54 Sec

Vertical resolution 34 Level

Lightning option 3 (Yair et al. 2010)

Table 3 Physical configuration of designed experiments

Physics options Schemes

Microphysics NSSL-2

Longwave radiation RRTM

Shortwave radiation RRTMG

Land surface physics MM5

Surface layer physics NOAH

Planetary boundary layer YSU

Cumulus physics GRELL-D
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Satellite datasets
INSAT-3D India launched INSAT-3D in 2013. This sat-
ellite using 6 channel Imager and 19 channel atmos-
pheric sounder to provide meteorological services. 
Multispectral imaging systems produce six-wavelength 
earth images (optical radiometer). The Meteorologi-
cal and Oceanographic Satellite Data Archival Centre 
(MOSDAC) (www. mosdac. gov. in) provides datasets and 
blended images of thermal infrared and visible channels 
to evaluate lightning case cloud coverage over research 
locations. Deep, mixed-phased convection cloud com-
plexes can be tracked by a meteorological satellite. Based 
on cloud-top brightness temperatures, storms in the sim-
ulation domain were tracked using half-hourly data from 
the INSAT-3D satellite’s visible (VIS) channel (0.65  m) 
and thermal infrared (TIR) channel (10.8 m).

ISS-LIS
The ISS-LIS lightning datasets has been used in this 

study to find the thunderstorm events with lightning. 
With a high detection efficiency, the ISS LIS instrument 
captures the moment when lightning strikes, analyses the 
radiant energy, and calculates the location both during 
the day and at night. The lightning datasets are provided 
by the NASA Global Hydrometeorology Resource Center 
(GHRC) DAAC, managed by the NASA Earth Science 
Data and Information System (ESDIS) project.

The Lightning Imaging Sensor (LIS) on board the Inter-
national Space Station (ISS) makes estimates of the vari-
ability and distribution of total lightning (intra-cloud and 
cloud-to-ground lightning) in tropical and mid-latitude 
regions. The ISS LIS sensor tracks the amount of radi-
ant optical radiation, logs the times of lightning strikes, 
and locates locations day and night with an average 24-h 
detection effectiveness of 70%. LIS data can be used for 
severe storm identification and analysis as well as studies 
the interaction of lightening with the atmosphere (Albre-
cht et  al. 2016; Blakeslee et  al. 2020). With a temporal 
range of 1 min to 1 h and a geographic resolution of 4–8 
kms, these lightning products are accessible to the gen-
eral public.

Methodology
The indices namely used in this study are as follows: K 
Index (KI), Cross Totals (CT Index), Totals Total Index 
(TTI), Convective Available Potential Energy (CAPE), 
Vertical Totals (VT Index), Energy Helicity Index (EHI), 
Potential Instability (POT), Supercell Composite Param-
eter (SCP), Storm Relative Humidity (SRH) 3  km, Pres-
sure Low Condensation Level (PLCL), Deep Layer Shear 
(DLS), Low Layer Shear (LLS), Significant Tornado 
Parameter (STP) and Dew Point. These indices have been 
calculated by using the vertical profiles of the model 

simulated variable and the results have been evaluated 
using the ERA5 reanalysis datasets.

Energy Helicity Index (EHI) helps forecast rotating 
thunderstorms. It is often used to locate supercell thun-
derstorms. The Significant Tornado Parameter (STP) 
is another statistic used to identify tornado hotspots. It 
is derived from wind shear and instability data and uti-
lised with other indices like the EHI. EHI considers ther-
modynamic and dynamic parameters to predict storms. 
STP, the Significant Tornado Parameter, assesses a tor-
nado’s destructive potential. SCP, the Supercell Compos-
ite Parameter, considers storm-relative helicity, low-level 
wind shear, and instability to predict supercell develop-
ment. High CAPE values indicate that thunderstorm for-
mation has a lot of energy, increasing the risk of severe 
weather like tornadoes, strong winds, and large hail. 
Wind shear, humidity, instability, and temperature gradi-
ents should all be considered to determine the possibil-
ity of severe weather. TTI is a meteorological indicator 
of thunderstorms. The lower atmosphere’s stability is 
determined by combining the Virtual Temperature index 
(VT) and the Cross Totals index (CT). Based on tempera-
ture, dew point, and pressure, TTI indicates atmospheric 
instability. It forecasts short-term thunderstorms. Thun-
derstorm development and structure, including supercell 
and tornado formation, depends on deep layer and low-
level shear. Deep layer shear, commonly measured up to 
6 km above ground, is the wind difference between lower 
and upper atmospheric levels. It promotes mesocyclone 
formation by tilting and elongating updrafts. Low-level 
shear is the wind difference near the surface, measured 
within the first 1–2 km above ground. It can increase the 
storm’s intensity, horizontally expand its clouds, and indi-
cate oncoming severe weather. Severe weather requires 
high amounts of deep layer and low-level shear. EHI, STP, 
and SCP are meteorological indicators that predict thun-
derstorms and tornadoes.

The indices have been computed over the thunder-
storm locations. The locations have been identified by 
using the ISS-LIS quality controlled browse image using 
ISS-LIS time domain search result [ISS LIS Quality-Con-
trolled Browse Data for April 2023 (nasa.gov)] datasets 
and have been confirmed through INSAT-3DR cloud 
brightness temperature datasets for the real time con-
dition confirmation. Using mathematical calculations 
based on temperature and moisture data at different 
pressure levels, instability indices show the potential for 
convection. The studies have examined various instability 
indices at various locations and provided threshold val-
ues for thunderstorm prediction using numerical weather 
prediction model.

http://www.mosdac.gov.in
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In the context of severe weather forecasting, mete-
orologists utilise these indices among others to analyse 
and forecast thunderstorm activity. The determination of 
which indices to use and how to interpret them is based 
on the objectives of the research or forecasts as well as 
the study area. The definitions and mathematical equa-
tions have been included in Additional file 1: Appendix-I 
for reference.

REGRID
The model has been optimized for the double nested 
domain with 9 and 3  km resolution respectively for all 
the case studies. The inner domain of the model has been 
taken into consideration for the thunderstorm indices 
studies. The reanalysis datasets which has been taken 
from the ECMWF, ERA5 is with 0.25 degree of resolu-
tion. To get the accurate results the re-gridding of the 
datasets has been done according to the ERA5 for that 
the model data has been regridded to 0.25 degree of 
resolution for all the case studies by using CDO rem-
apcon which avoid weird values if your variables are 
heterogeneous.

Box selection
The thunderstorm is typically a mesoscale system which 
is less in spatial and temporal size. The Box has been cho-
sen of 2 by 2 degree where the thunderstorm has devel-
oped inside the inner domain of the model which has 
3  km horizontal resolution. The box has been selected 
based on ISS-LIS lightning datasets. The Fig. 2 shows the 
box on ISS-LIS image in pink colour. The Table 1 provide 
the details of the box selection.

Time series
The time series analysis has been done on selected box 
after the regridding of both the datasets: Model and 
ERA5. The thunderstorm indices have been calculated 
from the model and ERA 5 datasets respectively. The 
model has undergone a 30-h integration process, during 
which a 6-h period was designated as a spin-up time for 
the model.

Model Skill Score
There are number of model skill scores (ACC, CSI, ETS, 
FAR, HSS, POD, TSS) used to check the model accuracy 
against the observational datasets. The model skill scores 
measure the performance of the forecast (Wheatcroft 
2019). Researchers have a wide array of model skill scores 
to choose from, and their selection is often based on 
previous research, region and the specific requirements 
of their studies. Hence, authors carefully decided which 
model skill score to use in their research. The data sets are 
used to generate a 2 × 2 contingency table, and the four 

elements are based on whether an event was observed 
(YES/NO) and predicted (YES/NO) in the data sets. The 
index values are also subdivided into two sections by 
defining an optimal threshold. Some thunderstorm indi-
ces are associated with higher values of optimal thresh-
old namely CAPE and TT Index while other depends on 
negative values like potential instability (POT).

The optimal threshold can only be considered when the 
correct event forecast is maximum whereas, false alarm 
and surprised events (by chance) were minimum. The 
detailed version of the model skill scores, and contin-
gency table have been provided in the Additional file 1: 
Appendix-II of the manuscript. Tables 4 and 5 provides 
the model skill score and contingency table used in this 
research.

Thunderstorm indices
The indices designed to measure the level of static stabil-
ity/instability of the atmosphere provide valuable infor-
mation about the vertical distribution of temperature and 
humidity, allowing for the assessment of atmospheric 
conditions and the identification of potential weather 
patterns or phenomena. Based on the factors in this 
study, thunderstorm indices are put into five groups. The 
first group is made up of simple indices based on temper-
ature, like VT (Virtual Temperature), which give a gen-
eral idea of how unstable the atmosphere is. In the second 
group are the measures like CT, TTI, and K Index that 
take into account both temperature and humidity. These 
indices give a more complete picture of the weather fac-
tors that can lead to thunderstorms. The third group is 
made up of wind-related measures like Deep Layer Shear 
(DLS) and Storm Relative Helicity (SRH). These fac-
tors measure the vertical wind shear and the chance of 
rotating updrafts, which are both important for the for-
mation of tornadoes. In the fourth group, advanced fac-
tors like CAPE (Convective Available Potential Energy) 
and EHI (Energy-Helicity Index) are taken into account. 
These indices give more information about the energy 
and helicity of the atmosphere, which are important for 
the growth of severe thunderstorms and tornadoes. The 
fifth group is made up of thematic indices that are linked 
to specific weather hazards. Some of these measures are 

Table 4 Contingency table

Observation 
(yes)

Observation 
(no)

Total

Forecast 
(Yes)

Hits (YY) False Alarm (YN) YY + YN

Forecast 
(No)

Misses (NY) Correct (NN) NY + NN

Total YY + NN YN + NN T = YY + YN + NY + NN
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STP (Significant Tornado Parameter) and SCP (Super-
cell Composite Parameter). They look at the exact con-
ditions that are needed for dangers like hail, downdrafts, 
and lightning. The K Index is used for the non- severe 
thunderstorm. For severe, CT, VT, Total Totals Index 
and other indices have been selected. The EHI, STP, SCP 
and SRH are more advanced form of indices to predict 
the probability of the convective storms. The PLCL show 
the estimated height of the cloud base. The VT index is 
the difference between the temperature at 850  hPa and 
500 hPa level. The stronger the vertical temperature gra-
dient, the more likely are the thunderstorms. The CT, 
TTI and K index also included the humidity for better 
prediction because if humidity is low at higher level, it 
will decrease the chance of thunderstorm occurrences. 
The PLCL is important factor to discriminate between 
tornadic and non-tornadic supercells. It indicates the 
cloud base height, lower height increases the chances of 
supercells and tornadic thunderstorms. This is because 
the height of the cloud base is an indication of the 
amount of energy and moisture available in the atmos-
phere. Lower cloud base height indicates the presence of 
warm and humid air near the surface, which can lead to 
the development of stronger updrafts and increase the 
chances of supercells and tornadic thunderstorms. As the 
increase in relative humidity at lower level may increases 
the buoyancy in downdraft and increased probability of 
tornadoes. When the LCL is comparatively low com-
pared, tornadoes are more likely to occur. Severe weather 
can be predicted by an extremely high dew point. A high 
dew point indicates unstable air because a high dew 
point indicates a high level of moisture in the air, which 
makes the air lighter and less dense, resulting in instabil-
ity. Raising the dew-point temperature near the surface 
by evaporation and forcibly lifting the atmosphere on 
large scales can both make the atmosphere unstable and 
increase the likelihood of thunderstorm formation. Some 
of the indices directly depends on the latent instability 
such as CAPE which is very sensitive to vertical profiles 
of air parcel (Chaudhuri 2007). The CAPE is the most 
important indices in predicting the thunderstorm and it 
shows good correlation with thunderstorm and lightning 

(Murugavel et al. 2014). There is an inverse relationship 
between CAPE and CIN during thunderstorm forma-
tion. When CAPE is high, a highly unstable environment 
with tremendous convective energy is present, and CIN 
is often low (Chaudhuri 2011). This indicates that there is 
little resistance to the formation of thunderstorms. Con-
trarily, CIN tends to be high when CAPE is low, signify-
ing a more stable environment with little energy available 
for convection, which makes it challenging for thunder-
storms to form. The potential for instability (POT) met-
ric indicates how unstable an area is by how much its 
value is negative. It is said that vector shear nearly around 
15–20  m/s is needed to support a supercell. The DLS 
exceeding 15 m/s increases the likelihood that the super-
cell will be originated there. The LLS should be 2.5–5 m/s 
for significant tornado supercells. It is important to take 
into consideration both the DLS and LLS for predicting 
the thunderstorms. The SRH provides a calculation of 
the change in wind with respect to the magnitude and 
direction in relation to the storm movement. The EHI is 
more specific because it combines both the CAPE and 
SRH at 3 km. EHI estimated the tornado risk as EHI less 
than 1 in that case majority of instances, the occurrence 
of supercells and tornadoes is unlikely, where if the value 
greater than 1 to 5 is considered as F3 and F5 tornadoes 
respectively. The SCP is also used to predict the super-
cells. The value of SCP greater than 1 favours the super-
cells. If it is less than 1 it shows non supercell storm. The 
STP also provides the tool to differentiate between torna-
dic and non-tornadic supercells. It combines the CAPE, 
SRH at 3 km and 1 km and PLCL for calculation. Multiple 
indexes help to improve severe weather forecasting. First, 
it allows for cross-validation, which eliminates the need 
for a single index and associated limitations. Each index 
measures distinct characteristics of the atmospheric con-
ditions that influence thunderstorm formation, such as 
instability, wind shear, and moisture availability. Fore-
casters boost forecast confidence by employing a variety 
of indicators. Different indexes are successful in different 
conditions or places. Some indices may be more helpful 
at recognizing hail possibility while others at predicting 
tornado formation. Forecasters can increase accuracy 

Table 5 Model skill scores descriptions

Statistics Formula Definition Range

Accuracy (ACC) AC =
YY+NN

YY+YN+NY+NN
What fraction of the forecasts were correct 0 to 1

Probability of Detection (POD) POD = YY/YY + NY What fraction of the observed “yes” events were correctly forecast 0 to 1

Equitable Threat Score (ETS) ETS =
YY−YYrandom

YY+NY+YN−YYrandom

YYrandom =
(YY+YN)∗(YY+YN)
YY+YN+NY+NN

How well did the forecast “Yes” events correspond to the observed “yes” 
events (accounting for hits that would be expected by chance

− 1 to 1

False Alarm Ration (FAR) FAR = YN/YY + YN What fraction of the predicted “yes” events actually did not occur 0 to 1
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and reliability by leveraging various indices to capitalize 
on their strengths while adjusting for their flaws. Inte-
grating many indices assists forecasters in identifying 
common patterns or trends, increasing their confidence 
in the upcoming severe weather event. The details of 
thunderstorm indices have been provided in the Addi-
tional file 1: Appendix.

Optimal threshold calculation
The optimal threshold for the different thunderstorm 
indices has been calculated using the model skill scores 
values. The model skill score method which has been 
already used in the past research (Haklander and Van 
Delden 2003; Huntrieser et  al. 1997; Kunz 2007; Sahu 
et al. 2020) has been followed in this study. Some indi-
ces with low values indicate increased thunderstorm 
probabilities, while the opposite is also possible. The 
optimal threshold has been calculated for all the indi-
ces for 0000 UTC, 1200 UTC and during the event of 
occurrence. The maximum, minimum, and standard 
deviation values of the model were simulated and ERA5 
datasets were used to establish the best threshold of the 
indices. The mean value of the area has been computed 
for the geographical region in which the thunderstorm 
event occurred. Figure  3 shows the example of choos-
ing the optimal threshold for the thunderstorm indi-
ces. CT index for the Surendranagar, Gujarat case has 
been considered to explain the process how to calculate 
optimal threshold. CT index ranges for Surendranagar, 
Gujarat are –  5  °C to 25  °C, with an increasing inter-
val of 1 °C to verify performance or determine the ideal 
threshold. The graph indicates the surge at 18  °C, and 
we also verify the model skill score values for more 

precision. The model skill scores on value 18  °C are: 
0.73 ACC, 0.64 POD, 0.01 FAR, 0.32 ETS, 0.63 CSI, 0.61 
TSS, and 0.49 HSS, which is the greatest among all the 
other values if other optimal threshold values are con-
sidered. The optimal threshold for the distinction of 
thunderstorm is then allocated to the index value at 
which an appropriate skill score reaches its maximum 
(Kunz 2007; Sahu et al. 2020). The TSS and Heidke are 
both often cited in literature as indicators of forecast 
skill, however, there appears to be a significant varia-
tion between their traits. It appears that the TSS seeks 
a somewhat high POD, but the Heidke Skill Score seeks 
to bring the FAR down to acceptable levels (Haklander 
and Van Delden 2003).

Results and discussion
Thunderstorm indices quantify atmospheric param-
eters for thunderstorm development and objectively 
analyse severe weather potential. They assist forecast-
ers in swiftly assessing thunderstorm activity and pre-
dicting hail, damaging winds, and tornadoes. However, 
thunderstorm indices may not accurately capture local 
atmospheric conditions and are indirect indicators of 
thunderstorm presence. Their accuracy depends on the 
quality of input data, and determining optimal thresh-
olds can be challenging. Understanding thunderstorm 
indices requires knowledge of atmospheric dynamics, 
and misinterpretation can lead to incorrect estimates 
or false alarms. Despite these limitations, thunderstorm 
indices provide a systematic approach to assess severe 
weather risk and support decision-making for public 
safety. The use of multiple indices helps assessing atmos-
pheric conditions and thunderstorm potential. Easy to 

Fig. 3 Assessment of optimal threshold using several model skill score parameters for the Cross Totals (CT index) over Surendranagar, Gujarat
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cross-validate information and mitigate the limitations of 
individual indices, enhances severe weather predictions. 
Thus, improved severe weather forecasts, allows forecast-
ers to produce more accurate predictions and give timely 
public safety alerts.

Temperature, moisture, and wind profiles must be pre-
cise to calculate EHI. EHI is limited by the difficulty of 
obtaining such data in real-time operational conditions. 
Due to atmospheric dynamics and storm features, EHI 
may work differently in different regions. In places with 
unusual storm structures or meteorological circum-
stances, its dependability and accuracy may be decreased. 
SCP, STP and SRH heavily relies on bulk wind shear, 
which may not adequately reflect the complicated wind 
profiles within supercell thunderstorms. In cases where 
wind shear profiles depart from the predicted structure, 
bulk shear may limit its accuracy. Advance indices such 
as STP, SRH and SCP does not offer microscale specifics 
regarding particular storm aspects and attributes. It may 
not capture storm behaviour at smaller sizes. The param-
eter thresholds or weighing factors employed in SCP, 
SRH and STP calculation can affect its performance. Val-
idation may be needed to determine the optimal thresh-
old values for individual geographies or weather patterns. 
Careful evaluation of these problems and continuous 
research to improve their performance can increase 
their applicability and dependability in severe weather 
forecasting.

Weather circumstances that are prone to create severe 
thunderstorms are identified using various parameters. 
All follow simple conceptual models of convection cir-
cumstances. However, false alarm rates are high and 
detection rates low. Most parameters are convection 
dependent. These parameters can be categorized based 
on their underlying physical processes or variables. 
Temperature-only indices, such as the Vertical Total 
Index, provide insights into the temperature profile of the 
atmosphere. Humidity-related indices, such as the Cross 
Total, K Index, Total Totals, and Dew Point, are used to 
assess moisture levels in the atmosphere. Wind-related 
indices, including Deep Level Shear, Low Level Shear, and 
Storm Relative Helicity, are used to characterize the wind 
patterns and their potential to produce severe weather. 
There are also advanced indices that incorporate themes 
related to hail, downdrafts, and lightning, such as the 
Supercell Composite Parameters (SCP) and Significant 
Tornado Parameter (STP). By categorizing these param-
eters, researchers and forecasters can better understand 
the physical processes that govern atmospheric phenom-
ena and use this knowledge to improve their predictions 
and assessments of weather and climate-related risks. 
The model skill scores have been computed based on 
optimal threshold for 0000 UTC, 1200 UTC, and the time 

of event occurrence. Since it would not provide an overall 
outcome about the skill scores, graphs for the entire time 
period have been plotted to provide a better understand-
ing of the skill score for the thunderstorm indices.

Verification of model simulated thunderstorm indices 
with ERA‑5
The thunderstorm indices have been calculated and plot-
ted in time series graph for all the case studies to under-
stand the difference in the model simulated datasets and 
reanalysis datasets. The time series graphs enable us to 
understand where the model worked well in accordance 
with the observed datasets and where it did not. The 
thunderstorm indices were chosen based on different 
studies that has been done all over the world and also in 
India and also testify some new indices for the case study. 
The time series have been plotted for the 24  h carrying 
hourly output of both the datasets. Based on the analy-
sis of Figs.  4, 5, 6, and 7, it is apparent that the indices 
simulated by the model exhibit a high degree of agree-
ment with the indices calculated from reanalysis data. 
However, it should be noted that some of the model-
calculated indices did not perform as well as the reanaly-
sis indices in certain case studies. The optimal threshold 
has also been calculated for all the thunderstorm indices 
for 0000UTC, 1200 UTC and during the occurrence of 
event over the region. This will give us better understand-
ing of the threshold value of the indices at different time 
periods.

Assessment of thunderstorm indices over Udaipur, Rajasthan
On 11 July 2021, a thunderstorm event occurred in 
Udaipur, Rajasthan, which resulted in the unfortunate 
loss of 11 lives due to lightning strikes. The incident took 
place in the late afternoon, between 1600 and 1900 UTC. 
Figure 4 depicts the calculated model simulated thunder-
storm indices over the reanalysis ERA-5 indices in a time 
series graph. The maximum, minimum, mean, and stand-
ard deviation of all the thunderstorm indices for both the 
model simulated indices and the ERA-5 derived indices 
are provided in Tables  6 and 7. The event occurrence 
time, as determined by the study of the graph and data-
sets, is 1900 UTC, which is consistent with the report, 
observational datasets, and synoptic imageries.

Figure  4 demonstrates that all indices have optimal 
thresholds, where the optimal thresholds for the K, VT, 
CT, and TTI indices are 30  °C, 24  °C, 19  °C, and 44  °C, 
respectively. In conjunction with the literature review, 
these values significantly indicate the likelihood of a 
thunderstorm. During the event, the dew point tempera-
ture was also elevated, around 21  °C and the PLCL was 
approximately 860 hPa, which is high enough to indicate 
a non-tornado thunderstorm. The POT value of − 56 K 
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indicates a region of instability that is favourable for the 
thunderstorm. The CAPE value is approximately 1300 J/
Kg, indicating the likelihood of convection. The DLS and 
LLS values of 15 m/s and 7 m/s, respectively, provide an 
updraft for the air parcel. The EHI value of 0.5 suggests 
the possibility of a supercell, but it did not indicate any 

convective activity and there was no helicity during the 
event. The SCP and STP values of 1 and −  0.1 indicate 
that it was not a supercell tornado. The SRH value of 
approximately 60  m2/s2 was quite low for intense storm 
motion.

Fig. 4 Time series comparison of calculated thunderstorm indices using WRF model and ERA5 datasets over domain [24.5N 26.5N 71.5E 73.5E], 
the vertical box in red showing the time of event occurrence, at Udaipur, Rajasthan on 11 July 2021
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The time series graph and table for all the thun-
derstorm indices provide results indicating that the 
thunderstorm in Udaipur, Rajasthan was in the low 
or weak category. The table provides the maximum 

and minimum of all the thunderstorm indices for the 
entire time, derived from the model simulated and 
reanalysis datasets. These values indicate that convec-
tive storm activity occurred. WRF simulated a drastic 

Fig. 5 Time series comparison of calculated thunderstorm indices using WRF model and ERA5 datasets over domain [22N 24N 71E 73E] the vertical 
box in red showing the time of event occurrence, at Surendranagar, Gujarat on 04 June 2021
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increase (800–2100 J/Kg) in CAPE when the event was 
recorded, although the ERA5 CAPE increased com-
paratively slowly (800–850  J/Kg). All indices showed 
similar trends between the model and ERA5 except 
for the TT-Index, which is showing a decreasing trend 

in ERA5 and an increasing trend in WRF. WRF also 
overestimated several indices, including the CT-Index, 
Dew Point, EHI, and SRH indices, with significant 
numbers. The indices with the best ability to fore-
cast the occurrence of thunderstorms using the best 

Fig. 6 Time series comparison of calculated thunderstorm indices using WRF model and ERA5 datasets over domain [20.5N 22.5N 87.5E 89.5E] 
the vertical box in red showing the time of event occurrence, at Hooghly, West Bengal on 07 June 2021
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threshold are CAPE, KI, DLS, LLS, DLS whereas EHI, 
STP, SRH have the worst forecasting abilities. Prior to 
assessing the indices’ precision, it is crucial to keep in 
mind that many of them were created to forecast par-
ticular kinds of thunderstorms.

Assessment of thunderstorm indices over Surendranagar, 
Gujarat
On June 04, 2021, a thunderstorm hit Surendranagar, 
Gujarat between 1600 to 2000 UTC in local time 2130 
to 0030 IST. Figure  5 compares the model-simulated 

Fig. 7 Time series comparison of calculated thunderstorm indices using WRF model and ERA5 datasets over domain [20.0N 22.0N 84.0E 86.0E] 
the vertical box in red showing the time of event occurrence, at Raygada, Odisha on 24 June 2020
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thunderstorm indices with ERA-5 indices, while Tables 8 
and 9 provide the maximum, minimum, mean, and 
standard deviation of thunderstorm indices derived 
from both sources. The report, observational datasets, 
and synoptic images align with the 1700 UTC event time 
indicated by the graph and datasets.

The CAPE’s optimal threshold of 1700  J/kg suggests 
the occurrence of a thunderstorm. The CT, VT, TTI, 
and K index during the event were 18  °C, 27  °C, 46  °C, 
and 26  °C, respectively, indicating favourable conditions 
for convection. The time series graph shows an increase 
in values during and after the event, followed by a sud-
den decrease indicating the dissipation of the convec-
tive storm. The dew point temperature is around 23  °C. 
The DLS and LLS values are 13 m/s and 5 m/s, respec-
tively, indicating the availability of ample wind updrafts 
for the formation of a thunderstorm. The optimal PLCL 
threshold is around 920  hPa, while before the event, it 
was around 750 hPa. The EHI is negligible, indicating the 
absence of helicity during the event. The SCP is low, but 
the graph approaches 1, consider in level 1 which indi-
cates a weak category of thunderstorm and a very low 
likelihood of super cell formation. (https:// www. saake 
skus. fi). The STP values are low or negative, indicat-
ing the absence of a tornado during the event. The SRH 
at 3  km is around 60  m2/s2, which is inadequate for an 
extremely severe thunderstorm.

The table provides optimal thresholds for all indices, 
indicating that advanced indices such as STP, SCP, and 

EHI are only useful during extremely severe thunder-
storm events. The indices gradually increased before 
the event and decreased after the event. Both WRF and 
ERA5 data showed the same pattern during the event. 
However, the WRF overestimated the CT-Index, while 
the DLS was underestimated. CAPE, LLS, DLS, TTI are 
most capable of forecasting the occurrence of thunder-
storms using the optimal threshold, while STP, EHI, VT, 
have the lowest forecasting abilities. The threshold values 
of thunderstorm indices and graph analysis suggest that 
the thunderstorm that occurred was weak and not an 
extremely severe thunderstorm.

Assessment of thunderstorm indices over Hooghly, West 
Bengal
On June 7th, 2021, a severe convective storm occurred 
in Hooghly, West Bengal, resulting in the unfortunate 
deaths of 27 individuals. This event comprised two back-
to-back thunderstorm occurrences, with the first taking 
place during the morning hours between 0800 to 1000 
UTC in local hour 1330 to 1530 IST. Synoptic images 
and observational datasets indicate the event time to be 
around 0900 UTC.

An analysis of time series graphs produced by model 
simulations and ERA5 revealed that the morning thun-
derstorm was severe, with CAPE values ranging from 
3900 to 4300  J/Kg in the afternoon thunderstorm. Fig-
ure  6 shows a graph analysis of various indices, includ-
ing the K-Index value at 31  °C, CT-Index at 17  °C, 

Table 6 Maximum, minimum, mean, and standard deviation computed for all thunderstorm indices over Udaipur, Rajasthan 
(Max = Maximum, Min = Minimum, Mean = mean, Std = Standard Deviation)

Index WRF ERA‑5

Max Min Mean Std Max Min Mean Std

CAPE 2561.5 0 847.39 441.71 3879.77 0 617.91 527.89

KI 45.84 27.51 39.77 2.13 45.47 2.29 37.15 1.75

CT 22.05 11.38 18.75 1.6 24.8 12.36 19.85 1.01

VT 36.78 18.95 24.19 35.49 18.35 23.69 2.36

TTI 51.96 35.43 42.94 2.17 50.35 22.28 42.35 2.45

DEW 27.32 − 1.97 22.37 2.86 33.85 16.61 25.06 2.05

POT − 35.72 − 63.31 − 52.75 4.24 − 28.96 − 70.35 − 51.74 4.64

EHI 3.18 − 0.46 0.32 0.32 3.46 − 0.22 0.2 0.24

SCP 5.37 − 0.43 0.39 0.49 4.97 − 0.4 0.31 0.45

STP 0.5 − 0.25 0 0.04 0.74 − 0.28 0.01 0.04

SRH 3 321.4 − 59.87 62.01 50.41 269.58 − 42.74 52.44 41.35

DLS 22.68 0.2 8.59 4.44 23.64 0.02 8.17 4.17

LLS 15.39 0.03 3.22 2.64 12.42 0 3.35 2.52

PLCL 992.95 531.74 843.04 84.7 992.62 515.65 85.05 67.48

https://www.saakeskus.fi
https://www.saakeskus.fi
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VT-Index at 25  °C, and TTI at 44  °C, all of which indi-
cated a strong severe thunderstorm during the morning 
hours. Tables 10 and 11 provide comprehensive statistics 
regarding the event.

The EHI during this event rose to 4.5, signifying the 
severity of the thunderstorm. The SCP varied from 4 to 6 
throughout the day, indicating an extreme severe weather 
event of category third. The OT of SRH at 3 km peaked 
at 615  m2/s2 in model simulation and 429  m2/s2 in ERA5, 
which is quite high. The STP was low as no tornadoes 
occurred. The DLS at 11 m/s and LLS at 7 m/s were ade-
quate updraft winds for the thunderstorm.

The Hooghly, West Bengal case was observed at 
0900 UTC, and it was noted that WRF recorded sharp 
increases and decreases in various indices such as CAPE, 
CT-Index, VT-Index, Dew Point, POT, EHI, SCP, and 
STP just before or after 0900 UTC. In contrast, ERA5 
exhibited smooth changes. Additionally, WRF and ERA5 
represented indices such as K-Index, Dew Point, LLS, 
and DLS. Of all cases, the Hooghly, West Bengal case 
recorded the highest CAPE threshold, reaching 4300  J/
Kg at 1200 UTC, indicating the severity of the event. The 
indices that exhibit the highest predictive capacity for 
forecasting the onset of thunderstorms, when utilising 
the optimal threshold, includes CAPE, KI, VT, CT, TT, 
EHI, SCP, SRH DLS and LLS. All indices perform well 
during this thunderstorm event. Overall, the Hooghly, 
West Bengal convective storm was an extreme severe 
weather event, and all thunderstorm indices indicated its 
severity.

Assessment of thunderstorm indices over Odisha
According to the INSAT-3D and ISS-LIS datasets, the 
thunderstorm occurred on June 24, 2020, at around 
1300 UTC during the midday in local time zone 1830 
IST. Because the optimal threshold of CAPE is currently 
around 1300 J/kg, it is rather evident that a thunderstorm 
is beginning to develop. At the time that the occurrence 
took place, the relevant values for the CT, VT, TTI, and K 
index OT were 18 °C, 23 °C, 42 °C, and 34 °C. The maxi-
mum and minimum values for all the thunderstorm indi-
ces show the formation of convective storm. For example, 
CAPE reaches to 3900 J/Kg, TTI around 46 °C, K Index 
around 43  °C, CT around °C and TTI around 47  °C 
respectively. Figure 7 figures suggest that there is a pos-
sibility for convection to take place given the conditions. 
The time series graph also shows a spike in values during 
the occurrence, which depicts the dissipation of the con-
vective storm, and then a steep drop in values after the 
incident. Tables 12 and 13 provides the computed scores 
for the event. The dew point is often found somewhere 
around 23  °C. The examination of graphs indicates that 
there is enough wind updraft available for the generation 
of thunderstorms with a DLS of approximately 6 m/s and 
an LLS of approximately 3.5  m/s. A little over 940  hPa 
was the OT of PLCL just before the disaster occurred. 
Due to the exceptionally low EHI, there is no evidence 
of helicity during the event. The SCP is quite low, the 
graph hits 0.5, which implies that there is no probability 
of a supercell but there is a 15% chance of a thunderstorm 
occurring. The readings of the STP, which are similarly 

Table 8 Maximum, minimum, mean, and standard deviation computed for all thunderstorm indices over Surendranagar, Gujarat 
(Max = Maximum, Min = Minimum, Mean = mean, Std = Standard Deviation)

Index WRF ERA‑5

Max Min Mean Std Max Min Mean Std

CAPE 3761.99 1.56 1544.88 601.74 4070.24 0 1297.55 631.77

KI 45.91 − 6.34 22.14 12.19 42.67 2.09 23.82 9.03

CT 25.92 − 5.43 16.08 6.21 26.33 12.55 20.05 2.94

VT 36 22.27 29.99 2.3 34.62 23.57 29.12 1.91

TTI 58.35 27.03 46.07 5.33 55.18 32.44 47.33 4.54

DEW 27.25 9.56 22.85 3.19 28.91 13.64 22.57 2.3

POT − 36.71 − 72.93 − 52.55 7.2 − 34.89 − 71.82 − 54 7.29

EHI 5.27 − 1.48 0.56 0.61 4.09 − 0.81 0.38 0.45

SCP 17.66 − 3.84 1.1 1.49 8.98 − 2.37 0.92 1.31

STP 1.53 − 1.37 0 0.16 1.57 − 1.31 0 0.14

SRH 287.88 − 96.78 56.02 51.41 2.38 − 72.67 46.85 43.64

DLS 29.96 0.54 13.52 6.18 25.71 0.02 11.59 6.29

LLS 13.38 0.14 2.86 1.8 9.77 0 2.35 1.8

PLCL 996.32 660.25 895.29 82.5 979.23 687.37 885.61 61.45
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low or headed toward zero, indicate that there was no 
tornado activity throughout the event. The SRH at 3 km 
is only 70  m2/s2, which is a very substantial amount lower 
than what one would anticipate for a truly powerful thun-
derstorm. The Raygada, Odisha case has represented bet-
ter the agreement between the ERA5 and WRF, among 
all cases. It showed that given model configuration in the 
present study has simulated comparatively better thun-
derstorms. When using the optimum threshold, the fol-
lowing indices have the highest accuracy in predicting for 
thunderstorm occurrence CAPE, TT, KI, On the other 
hand, advanced indices exhibit the lowest estimating per-
formance. The interpretation of the optimal threshold of 
thunderstorm indices and graph analysis that was just 
described suggests that the thunderstorm that occurred 
in this instance was a moderate one and not an exceed-
ingly severe one.

Model Skill Score analysis
The categorical verification provides a methodical way to 
assess the accuracy of different indices and select appro-
priate thresholds. To evaluate the optimal threshold dif-
ferent skill scores have been tested. The Probability of 
Detection (POD) and False Alarm Ratio (FAR) are widely 
employed metrics in research. POD is the proportion of 
accurately predicted events. In addition, the False Alarm 
Ratio (FAR) is utilised. Both metrics range from 0 to 1. 
In comparison to other meteorological indices, the FAR 
skill score for Dew Point, PLCL, POT, STP, CT, and K is 
significantly higher for all events. Negative skill is absent 

from these indices, highlighting the good performance 
of the model. POD, which ranges from 0 to 1, achieves 
a perfect score of 1 when overpredicting events, exclud-
ing false events, as shown in Fig. 8. As shown in Fig. 9, 
the False Alarm Rate (FAR) increases when events are 
underpredicted. In Fig.  8, indices such as K, CT, VT, 
Dew Point, PLCL, and DLS demonstrate high skill scores 
across all events. EHI, SCP, and STP are superior indi-
cators for the West Bengal competition. The Accuracy 
(ACC) ranges from 0 to 1 in Fig. 10, representing the pro-
portion of accurate forecasts. With the exception of the 
CAPE and VT Index of Odisha, all of the indices perform 
well. In most circumstances, indices produce commend-
able results exceeding 0.6. The Equitable Threat Score 
(ETS) in Fig. 11 ranges from − 1/3 to 1. Between 0.2 and 
0.8 ETS skill scores validate accurate predictions of thun-
derstorm events. Complex scores such as ETS, CSI, HSS, 
and TSS are useful for verification. Figure 12 depicts the 
Critical Success Index (CSI), which quantifies the ratio 
of results to the total number of events and false alarms 
and ranges between 0 and 1. Across regions, K, CT, Dew 
Point, and VT skill scores stand out. CSI focuses on pre-
dicting issues and disregards accurately predicted non-
events. However, it can be laborious and subject to event 
frequency bias. True Skill Statistics (TSS), depicted in 
Fig. 13, are calculated as the difference between the prob-
ability of expected events and the occurrence of unan-
ticipated non-events. TSS ranges between −  1 and 1. 
The instance of thunderstorms in Gujarat yields atypical 
results for the majority of indices. Indices such as STP, 

Table 10 Maximum, minimum, mean, and standard deviation computed for all thunderstorm indices over Hooghly, West Bengal 
(Max = Maximum, Min = Minimum, Mean = mean, Std = Standard Deviation)

Index WRF ERA‑5

Max Min Mean Std Max Min Mean Std

CAPE 5624.77 0 1680.3 1572.65 6995.75 0 1359.22 1185.97

KI 44.03 19.81 37.62 3.62 43.49 − 20.29 34.5 5.68

CT 23.27 10.94 18.04 1.89 24.09 12.88 19.31 1.48

VT 33.18 19.44 26.67 2.59 31.09 18.51 24.99 1.99

TTI 50.78 36.67 44.71 2.32 50.32 14.69 43.86 3.26

DEW 29.01 0.47 22.56 4.6 30.04 16.81 24.9 1.64

POT − 38.8 − 61.51 − 49.77 3.46 − 28.89 − 66.6 − 49.44 5.28

EHI 9.38 − 0.85 1.41 1.48 6.69 − 0.79 0.83 0.96

SCP 26.17 − 0.44 1.89 2.37 19.05 − 0.35 1.36 1.78

STP 2.94 − 0.31 0.17 0.26 2.56 − 0.15 0.15 0.23

SRH 3 615 − 82.77 100.78 73.24 419.23 − 45.71 93.08 63.64

DLS 22.578 0.59 9.77 4.02 20.01 0 8.77 3.49

LLS 18.62 0.02 4.86 3.09 16.19 0 4.75 3.08

PLCL 998.4 592.98 872.07 98.18 998.43 523.44 905.6 72.07
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DLS, SCP, and VT reached "0" in the Gujarat region prior 
to the event. Figure  14 depicts the Heidke Skill Score 
(HSS) for determining optimal thresholds for forecasts 
and ranking indices by their prediction capability. HSS, 
which ranges from − 1 to 1, highlights advanced indices 
such as EHI, SCP, STP, and SRH for the event in West 
Bengal. HSS performs admirably during event occur-
rences in all regions.

The majority of indices that exhibited superior perfor-
mance in terms of the maximum Heidke Skill Score (HSS) 
and TSS also demonstrated a notable level of accuracy 
in predicting thunderstorm occurrences. In the investi-
gation of both the maximum thunderstorm probability 
and the skill scores, it becomes evident that the accurate 
prediction of thunderstorms with varying characteris-
tics cannot be accomplished through the utilisation of a 
single thunderstorm index that aligns optimally with the 
ERA5 reanalysis data or any other observational datasets. 
In order to enhance comprehension prior to analysis, it 
is helpful to employ cross checking techniques utilising 
both the indices graph and model skill score. That also 
applies to the problem of finding an appropriate thresh-
old. When summarizing the results, the indices with the 
highest skills for thunderstorm prediction based on the 
event time are K Index, CT Index, VT Index, Dew Point. 
The advanced indices like EHI, SRH, STP, SCP performed 
well and scores high in model skill scores during the 
severe thunderstorm events, for example Hooghly case. 
When assessing the skill of the indices, it must be taken 

into account that while several indices were designed for 
the prediction of a special kind of thunderstorm some 
other indices were designed to forecast severe thunder-
storms. CAPE, CIN, K Index can be used for every cat-
egory of thunderstorm. The severity of thunderstorm 
accompanied by hails, heavy wind gust and tornado effect 
can be predicted by the thematic indices. However, when 
considering severe thunderstorm (Hooghly), a high pre-
diction skill was found for EHI, SCP, STP, VT Index. Indi-
ces considering additional dynamic information like SCP, 
STP, EHI, SRH Index exhibit significantly low skill scores 
for all types of non-severe category of thunderstorms. It 
is interesting to note that several other indices are more 
suitable to predict thunderstorms than the CAPE. The 
study revealed that an index-based prediction of severe 
thunderstorms that are associated with hail or storm/
flood damage is a big challenge. When compared to the 
prediction of thunderstorm vs. non-thunderstorm days, 
skill scores for the prediction of severe thunderstorms 
and their maximum the probability are quite low.

Summary and conclusions
The Weather Research Forecasting (WRF) model, in con-
junction with the 0.25 Global Data Assimilation System 
(GDAS) Final dataset, has been utilized to simulate four 
distinct thunderstorm events. The model was imple-
mented using a double nested domain with horizontal 
resolutions of 9 and 3 kms and was integrated over a 
period of 24  h with an additional 6-h spin-up time. To 

Table 12 Maximum, minimum, mean, and standard deviation computed for all thunderstorm indices over Raygada, Odisha 
(Max = Maximum, Min = Minimum, Mean = mean, Std = Standard Deviation)

Index WRF ERA‑5

Max Min Mean Std Max Min Mean Std

CAPE 3939.28 0 1659.65 730.49 4169.33 0 1215.75 612.81

KI 43 23.88 34.37 3.94 41.99 23 34.08 2.96

CT 22.7 13.92 19.22 1.38 23.1 14.88 19.08 1.36

VT 26.9 20 23.36 1.01 25.8 19.84 23.18 0.96

TTI 46.94 37.46 42.59 1.63 46.62 37.02 42.04 1.52

DEW 27.58 18.18 24.85 1.89 30.19 18.65 25.48 1.16

POT − 40.25 − 62.36 − 50.77 4.81 − 36.69 − 60.33 − 49.47 4.22

EHI 3.18 − 0.82 0.33 0.39 2.71 − 0.86 0.18 0.28

SCP 4.51 − 0.57 0.23 0.33 3.43 − 0.72 − 0.21 0.35

STP 0.8 − 0.36 0 0.04 0.39 − 0.2 0 0.03

SRH 3 213.51 − 63.58 27.98 32.21 217.41 − 58.32 21.92 30.82

DLS 24.69 0.26 6.31 2.98 16.2 0.03 6.07 2.85

LLS 13.59 0.08 2.8 2.13 13.74 0 2.87 2.28

PLCL 1033.27 755.43 924.45 57.5 996.68 759.67 936.87 36.02
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assess the accuracy of the model, thunderstorm indices 
were computed and compared to data from the ERA5 
reanalysis dataset. The results of this comparison were 
then analysed and formalized. The link between these 
many indices and numerical weather prediction mod-
els might vary. Severe thunderstorm potential is meas-
ured using a number of different indices. Overall, there 
is the potential for substantial association between 
these indices and numerical weather prediction models. 

Forecasting severe thunderstorms is a difficult endeavour 
even with the greatest models and indices since there are 
numerous variables that might influence how a thunder-
storm develops. All these indices are inter-related, they 
are used together to identify the likelihood of severe 
weather conditions, forecast the potential of severe 
thunderstorms, tornadoes and other severe weather 
conditions. High values indicate a high potential for the 
development of thunderstorms. Thunderstorm indices 

Fig. 8 Model skill score comparison of Accuracy (ACC) for different thunderstorm indices over all the case study domains
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should be used in conjunction with other forecasting 
tools, such as radar and satellite imagery, to help predict 
severe weather events.

Thunderstorm indices CAPE showed significant val-
ues, with CAPE reaching above > 1200  J/kg and TTI 
around > 46  °C, suggesting the formation of a convec-
tive storm. The Wind updraft potential was sufficient for 
thunderstorm generation, with DLS of 10  m/s and LLS 
of 10  m/s. The EHI (> 1), and SCP (≥ 3.5), STP (≥ 1.2) 

along with low SRH at 3  km (100  m2/s2), indicated no 
evidence of helicity or tornado activity during the event. 
The Hooghly, West Bengal case recorded the highest 
CAPE threshold of 4300 J/Kg at 1200 UTC, indicating the 
severity of the event. These included CAPE values rang-
ing from 3900 to 4300 J/Kg, EHI reaching 4.5, SCP indi-
cating extreme severe weather, significant SRH and STP 
values, as well as adequate DLS and LLS wind conditions 
for updrafts. Despite EHI suggesting the possibility of a 

Fig. 9 Model skill score comparison of Critical Success Index (CSI) for different thunderstorm indices over all the case study domains
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supercell in Rajasthan, there was no convective activity or 
helicity during the event. SCP and STP values suggested 
it was not a supercell tornado. Favourable conditions for 
convection were indicated by CT, VT, TTI, and K index 
values of > 18 °C, > 27 °C, > 45 °C, and > 30 °C, respectively 
exhibited high predictive capacity for forecasting the 
onset of thunderstorms. The simplistic indices such as 
VT, CT, TTI works well with the weak and non-supercell 

thunderstorms such as for Udaipur, Rajasthan, Suren-
dranagar, Gujarat, and Raygada, Odisha cases. The super-
cell thunderstorm happened at Hooghly, West Bengal 
was predicted well by EHI, SCP, STP and SRH (advance 
indicators). The DLS, LLS and PLCL also indicated the 
supercell or non-supercell thunderstorm category. The 
CAPE is the most potent indices for predicting the thun-
derstorm either weak or strong, but the limitation is it 

Fig. 10 Model skill score comparison of Equitable Threat Score (ETS) for different thunderstorm indices over all the case study domains
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cannot predict the supercell or other categories alone. 
But combining with EHI, SRH and SCP it can predict the 
thunderstorms.

The performance of a forecast model can be assessed 
using a contingency table using the True Skill Statistic 
(TSS), Probability of Detection (POD), False Alarm Ratio 
(FAR), Heidke Skill Score (HSS), and Accuracy. The per-
centage of correct forecasts, the percentage of predicted 
events that occurred, the percentage of predicted events 

that didn’t happen, the improvement in forecasting 
skill compared to a reference forecast, and the percent-
age of correct forecasts relative to the total number of 
forecasts are all measured by these scores. These scores 
measure the forecast’s performance and are computed 
using the items of the contingency table. The CSI, TSS 
and HSS can be used for the forecasting skill score that 
are more complicated and need more useful verification 
parameters.

Fig. 11 Model skill score comparison of False Alarm Ratio (FAR) for different thunderstorm indices over all the case study domains
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This study aimed to determine the capability of the 
model to track real-time events and its validity can be 
checked through the thunderstorm indices. The model’s 
skill score was used to validate its performance, and the 
simulated thunderstorm indices produced by the model 
were compared with the ERA5 dataset. The model-gen-
erated indices showed good performance, except for an 
underestimation in the Raygada, Orissa case. To further 
analyse the data, weightage was given to the True Skill 
Statistics (TSS) and Heidke Skill Score (HSS), which 

consider only the correct forecasts, and not merely those 
made by chance. The optimal threshold of the indices 
obtained from both the model-simulated and reanalysis 
datasets demonstrated a positive correlation in almost 
all events and cases. The WRF–ARW model successfully 
simulates the surface and vertical meteorological condi-
tions in the current experiment. The model’s overesti-
mation and underestimation were minimal, and no time 
lag or lead was observed. These findings suggest that the 
model can be used to predict the real-time occurrence 

Fig. 12 Model skill score comparison of Heidke Skill Score (HSS) for different thunderstorm indices over all the case study domains
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of thunderstorms, regardless of their strength. The vari-
ous indices, coupled with the implementation of skill 
scores, can effectively predict thunderstorms. Thun-
derstorm indices help with the quick assessment of 
thunderstorm activity and related dangers by assessing 
atmospheric parameters for forecasting and analysing 
the potential for severe weather. They do, however, act as 
a secondary indicator of storms and may not accurately 
represent regional variations. Data quality and optimal 

threshold setting are key to accuracy for thunderstorm 
assessment. Due to these indices’ complexity, incorrect 
interpretation could result in false alarms. Despite their 
drawbacks, they offer a systematic way to assess the 
danger of severe weather so that decisions can be made 
with knowledge. Through cross-validation, using differ-
ent indices enhances forecasting by capturing many fac-
tors that affect thunderstorms. Integrating several indices 
improves accuracy, helps to spot patterns, and gives 

Fig. 13 Model skill score comparison of Probability of Detection (POD) for different thunderstorm indices over all the case study domains
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forecasters more confidence when it comes to predicting 
severe weather events. Despite their limits, thunderstorm 
indices improve predictions and enable prompt public 
safety alerts, thereby helping in effective risk assessment 
and mitigation.
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