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Abstract 

Background The study aimed to identify the influential factors required to prepare landslide vulnerability maps 
and establish disaster prevention measures for mountainous areas with forest roads. The target area is Sancheok‑
myeon, Chungju‑si, where several landslides have occurred in a narrow area of approximately 3 km × 4 km. As the area 
has the same rainfall and vegetation conditions, the influences of the physico‑mechanical characteristics of the soil 
in accordance with compaction and topographic characteristics could be analyzed precisely.

Methods Geological surveying, sampling, and laboratory testing assessed landslide risk in the study area, and data 
including unit weight, specific gravity, porosity, water content, soil depth, friction angle, cohesion, slope angle, profile/
plan curvature, TWI were obtained. Preprocessing and screening such as min‑max normalization and multicollinearity 
were conducted for the data in order to eliminate overestimation of each factor’s effectiveness. The influence of each 
factor was analyzed using logistic regression (LR), structural equation modeling (SEM), extreme gradient boosting 
(XGBoost), and light gradient boosting machine (LightGBM).

Results All methods showed that soil depth has the greatest impact on landslide occurrence. Friction angle, slope 
angle, and porosity were also selected as influential factors, although each method ranked them slightly differ‑
ently. Topographic factors, such as plan curvature, profile curvature, and the topographic wetness index, had mini‑
mal influence. This appears to be because landslides near forest roads are more affected by how well compaction 
was performed during banking than by the concave or convex shape of the slope. This study presents analysis results 
for an area with the same rainfall and vegetation conditions; therefore, the analysis of the influence of the physico‑
mechanical characteristics of the soil and topography was more precise than when comparing landslides occurring 
in different regions. Our results may be helpful in preparing landslide vulnerability maps.
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Introduction
Landslides constitute one of the most dangerous types 
of natural disaster. They are known to have caused 838 
annual deaths globally between 2002 and 2021 (CRED 
2023). The precise mapping of landslide susceptibility and 
methods to assess landslide risk to decrease their poten-
tial damage have received substantial research atten-
tion. However, predicting landslide occurrence remains 
difficult despite sustained research efforts, because it is 
affected by complex interactions among many factors, 
including geological conditions, geomorphology, climate, 
earthquakes, and vegetation (Gerrard and Gardner 2002; 
Wobus et al. 2003; Hasegawa et al. 2009). The main fac-
tors influencing landslide occurrence and the relation-
ships among them remain unclear without rainfall factor, 
thus hindering precise landslide prediction (John and 
Douglas 2012).

With reference to analysis methods related to land-
slide, statistical methods including conditional prob-
ability, weight of evidence, frequency ratio (FR), and 
logistic regression (LR) were typically used in the 1990s 
and 2000s to analyze the influences of factors causing 
landslides and to predict landslides. Machine learning 
methods, such as artificial neural networks and deep 
learning, have been used since the 2010s. For example, 
EKER and Aydin (2014) prepared a landslide vulner-
ability map in an analysis of landslide vulnerability for 
different road types (e.g., forest roads and expressways) 
by conducting geographic-information-system-based 
LR analysis of land use, petrology, elevation, slope, side, 
distance to rivers, distance to roads, and plan curvature. 
Pham et al. (2016) assessed landslide vulnerability in 930 
landslide areas by analyzing Google images using support 
vector machine, LR, Fisher’s linear discriminant analy-
sis, Bayesian network, and naïve Bayes techniques. Wang 
et al. (2016) proposed a landslide prediction model using 
LR, FR, decision tree, weight of evidence, and artificial 
neural networks. Chen et al. (2018) proposed a landslide 
vulnerability model using a random forest (RF) algo-
rithm based on a digital elevation model and Landsat-8 
data. Xiao et al. (2020) proposed a landslide vulnerability 
model using hybrid models combining RF, FR, CF (cer-
tainty factor), and the index of entropy (IOE), namely 
RF-FR, RF-CF, RF-IOE, IOE-CF, and CF-FR. Further 
methods—such as big data, machine learning, and deep 
learning methods, which may overcome existing math-
ematical and engineering limitations—have been actively 
used in recent years. Representative prediction models 
include boosting-based models, such as extreme gradi-
ent boosting (XGBoost), light gradient boosting machine 
(LightGBM), and category boost (CatBoost) (Chen and 
Guestrin 2016; Ke et al. 2017; Prokhorenkova et al. 2017).

In relation to influential factors of landslide, precipi-
tation or rainfall intensity was pointed out as the most 
influential factors on landslide in research cases using 
data-driven analysis because rainfall conditions are dif-
ferent with each other due to greater distance between 
data collection points as numerous landslide cases need 
to be analyzed (Chae et al. 2004; Quan et al. 2011; Chen 
et al. 2013). Also, in physically based analysis, the friction 
angle and cohesion included in the slope stability analy-
sis equation were evaluated as the most dominant factors 
on landslide (Regmi et al. 2010; Qu et al. 2021). Besides, 
it was reported that the stability of slope with complete 
vegetation cover is higher than that of slope with mea-
gre vegetation (Schmidt et al. 2001; Osman and Barakbah 
2006), and there were substantial interests in the effects 
of forest roads hydrologically and geomorphically on 
earth surface and landforms (Luce and Wemple 2000; 
Dutton et al. 2005). Vanacker et al. (2005) reported that 
changes in the forest landscape or large-scale logging, 
which change the soil infiltration and ground evapotran-
spiration rates, thus indirectly affect the water contents 
in soil and reduce slope stability. It was reported that the 
soils from landslide prone areas were mainly silty soils 
with low plasticity (Jotisankasa and Vathananukij 2008). 
Nugraha et al. (2015) argued that land surface (geomor-
phometric) characteristics have a significant relation-
ship with the landslide distribution, and even others 
have emphasized the role of investigating topographic 
influence (Fernandes et al. 2004; Broothaerts et al. 2012). 
In addition, Owen (1981) said that the sunny aspects 
were much more susceptible to landslide than the shady 
aspects. When the soils are saturated, the liquid limit 
water content of the sunny aspect subsoil is exceeded, 
while that of the shady aspect subsoil is not. Meanwhile, 
Kimaro et  al. (2000) suggested that the most important 
soil characteristics is presence of saprolite or bound-
ary with hard bed rock. As mentioned above, the most 
influential factors are differently evaluated depending on 
researcher’s perspectives because various factors includ-
ing vegetation, climate, geology, topography and so on, 
affect landslides.

Throughout Korea’s many mountainous areas, several 
forest roads have been constructed for forest manage-
ment. Construction of these roads involves the forma-
tion of cutting and banking slopes, which affect slope 
stability by changing the ground, topography, and water 
flow (Wempleet al. 1996; Choi et  al. 2011). In addition, 
a recent increase in guerrilla rainstorms caused by cli-
mate change has increased landslide risk. According to 
the Korea Forest Service, the frequency of landslides is 
increasing annually, and the size of a landslide depends 
on the region and season, with typhoons and heavy rain-
fall being concentrated in summer (Korea Forest Service 
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2021). Therefore, previous regional landslide analyses 
have focused primarily on rainfall, which is an external 
factor; therefore, detailed risk plan considering internal 
factors has not been facilitated when activities such as 
the selection of areas for reinforcement and the estab-
lishment of disaster prevention measures are conducted. 
The present study analyzes the effects of soil, topographic 
factors, and rainfall on landslides using statistical and 
machine learning methods to identify major influencing 
factors. The results may aid in the preparation of land-
slide vulnerability maps and establish disaster preven-
tion measures (e.g., prioritizing areas for reinforcement) 
within budgetary constraints.

Methodology
The theory of logistic regression analysis
Logistic regression (LR) analysis determines correlations 
between a dependent variable and multiple independent 
variables influencing it. The probability of an event can 
be calculated and expressed as a value between 0 and 1. 
Values can be binarized by those ≥ 0.5 being assigned as 
1, and those < 0.5 being assigned as 0. The probability of 
an event through LR analysis ( PZ ) is given by Eqs. (1) and 
(2):

where Z is the LR, α is a constant, and βn is the regression 
coefficient of the independent variable ( Xn).

The Nagelkerke R-squared, Hosmer and Lemeshow, 
and confusion matrix verification methods were used to 
analyze the reliability of the results of LR analysis. Nagel-
kerke R-squared indicates the degree to which inde-
pendent variables can explain the dependent variable. A 
value of ≥ 20% indicates that the independent variables 
have explanatory power. The Hosmer and Lemeshow 
test determines the overall goodness-of-fit of a regres-
sion model. A significance level of > 0.05 indicates that 
the model has explanatory power. The confusion matrix 
estimates prediction accuracy as the area under the 
curve (AUC) calculated for an ROC curve with an X-axis 
of “1-specificity” and a Y-axis of “sensitivity”. Values of 
AUC are distributed between 0 and 1, with a value close 
to 1 indicating an accurate model (Fawcett 2006; Godt 
et  al. 2008; Šimundić 2009). Accuracy, specificity, and 
sensitivity can be calculated using Eqs.  (3), (4), and (5), 
respectively:

(1)PZ =
1

1+ e−Z

(2)Z = α + β1X1 + · · · + βnXn

(3)Accurancy =
TP + TN

TP + TN + FP + FN

where a true positive (TP) is the correct prediction of a 
positive value, a true negative (TN) is a correct predic-
tion of a negative value, a false positive (FP) is a nega-
tive value incorrectly predicted as positive, and a false 
negative (FN) is a positive value incorrectly predicted as 
negative.

The theory of structural equation model
The SEM used here was first suggested by Wright 
(1921). It is a path-analysis-based statistical method 
used to identify causal relationships among multi-
ple variables with complex interrelationships and in 
cases with many independent and dependent vari-
ables. Although it seems similar to multiple regres-
sion analysis, it is a more detailed model because it 
can consider the mutual influences of all variables 
and can easily identify interrelationships among vari-
ables using graphical representation (Hox and Bechger 
1999; Yung 2008; Ullman and Bentler 2013). The SEM 
can be subdivided into a measurement model for con-
firmatory factor analysis and a theoretical model for 
multiple regression and path analyses. The former is 
applied when each variable can explain latent variables 
perfectly, and the latter is used to group variables into 
representative latent variables and to find the most 
descriptive model. When studying landslides, the latter 
model is more suitable than the former, as many factors 
related to slope failure or landslide occurrence are dif-
ficult to explain fully, and there are limitations related 
to ground heterogeneity.

Theoretical modeling in an SEM is calculated using par-
tial least squares (PLS), which are subdivided into partial 
least squares regression (PLS-R) and partial least squares 
path models (PLS-PMs). PLS-R is used when there are 
more variables than the number of data, and PLS-PMs 
are applied to analyze interrelationships. This study 
applies a PLS-PM, which can deal with a large amount 
of data and analyze interrelationships and causal analysis 
among influential factors related to landslide occurrence. 
PLS-PM analysis is a multivariate analysis technique that 
analyzes the systems of relationships among many blocks 
containing variables. This approach follows the compo-
nent-based estimation procedure, and it is defined by the 
following two basic concepts: each block of variables acts 
as a latent variable, and it is assumed that there is a sys-
tem of linear relationships between blocks. The analysis 

(4)Specificity =
TN

(TN + FP)

(5)Sensiticity =
TP

(TP + FN )
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considers multiple relationships between variable blocks, 
and each variable block is assumed to be represented by 
a latent variable or theoretical concept. Here, each latent 
variable is a hypothetical variable created to generate 
an SEM. The latent variables are grouped with variables 
that have similar characteristics. The determination and 
interrelationships of the latent variables are set by the 
researcher’s subjective judgment, and continuous modifi-
cation and supplementation are required until an optimal 
model is developed.

Figure 1 outlines the PLS-PM, showing the constituent 
manifest (dependent and independent variables,  Xij) and 
latent variables. The first step in PLS-PM analysis is to set 
the latent variables—which comprise manifest variables 
with similar characteristics (Fig. 1a)—and then the inter-
nal model is determined based on the latent variables 
of the external model (Fig.  1b). The setup of the exter-
nal and internal models is then modified and updated 
until statistically significant results are obtained for the 
arrangement of variables, causal relationships, and error 
terms. The last step assesses the confidence of the entire 
model using the external and internal models estimated 

from the above two steps (Fig. 1c). Here, weight and load-
ing (α and β, respectively; Fig. 1) are essentially correla-
tion coefficients.

The theory of XGBoost
XGBoost uses the classification and regression tree 
(CART) model for the existing gradient boosting algo-
rithm and enables parallel processing, thereby enabling 
the resolution of various problems using data mining 
(Chen and Guestrin 2016; DSBA 2020; Yoon 2020; An 
2021). Unlike other tree-based learning methods, the 
learning of XGBoost uses Eq.  (6) based on the CART 
model. When the data comprise input variable x and out-
put variable y, y is the predicted value of data x, K is the 
number of CARTs, and f is the CART model (Chen and 
Guestrin 2016). Equation (7) gives the objective function 
for training the CART model. Here, l

(
yi, ŷi

)
 is the differ-

ence between the actual and predicted values, and � is 
the regularization of the model to prevent overfitting. 
The objective function equation at step t can be expressed 
using XGBoost’s additive method and Taylor expansion, 
as shown in Eq.  (8). According to the definition of the 

Fig. 1 Schematic diagram of the PLS‑PM. a The external model comprises manifest variables (dependent and independent variables,  Xij) and latent 
variables. b The internal model consists of latent variables  (LVi). c The complete PLS‑PM includes both the internal and external models
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Taylor expansion, gi is the first-order derivative of ŷi(t−1) 
and can be defined as gi = δŷ(t−1) l

(
yi, ŷ

(t−1)
)
 ; hi is the sec-

ond-order partial derivative of ŷi(t−1) and can be defined 
as hi = δ2

ŷ(t−1) l
(
yi, ŷ

(t−1)
)
 . The greedy and approximate 

algorithms are used to optimize the prediction model 
and identify the optimal split point using above equations 
(Chen and Guestrin 2016).

The theory of LightGBM
LightGBM is a GBM- and tree-based algorithm that 
performs learning using residuals. However, unlike the 
symmetric division method of conventional trees, its 
tree structure is asymmetrical due to its use of a leaf-
wise methodology. LightGBM uses a feature histogram 
that divides continuous variables into discrete sections 
(bins) during learning. This method learns a function 
from slope space g to input space XS using a decision 
tree. In the presence of the training set of n independent 
and identically distributed entities {x1, x2, · · · xn} , XS is a 
vector with a dimension of s. For GBM, the loss function 
for the model output value generated at each iteration 
is defined as a negative slope 

{
g1, g2, · · · gn

}
 . This model 

uses Eq. (9) to divide each node through a variable with 
the largest information acquisition (Ke et al. 2017):

where O is the training data in the tree node, d is the 
node, and j is the variable performing division at point 
d. However, this method is inefficient because it searches 
all divided sections. To prevent this, gradient-based one-
side sampling (a method of reducing the number of data) 
and exclusive feature bundling (a method of reducing the 
number of variables) are used.

(6)ŷi =
∑K

k=1
fk(xi)

(7)obj(θ) =
∑n

i
l
(
yi, ŷi

)
+

∑K

k=1
�
(
fk
)

(8)obj(t) =
∑n

i=1

[
gift(xi)+

1

2
hif

2(xi)

]
+�
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fi
)

(9)
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l|O
(d) =

∑
I
[
xi ∈ O : xij ≤ d

]
, n

j
r|O(d) =

∑
I
[
xi ∈ O : xij > d

]

Study area and data collection
Status of landslide occurrence and sampling locations
To analyze the factors influencing landslide occur-
rence, site investigation and sampling were con-
ducted in Sancheok-myeon, Chungju-si, South Korea, 
where a number of landslides occurred within a small 
area (3  km by 4  km) following 259  mm of rainfall on 2 
August 2020. The study area is located in the 37° 06′ 
02.6″N ~ 37° 08′ 26.5″ N, 127° 57′ 50.3″E ~ 127° 59′ 
13.1″ E, and it has a mountainous terrain due to the 
surrounding mountains, including Ocheong mountain 
(EL + 656.8  m) of the northeastern part, Cheondeung 
mountain (EL + 807.1  m) of the eastern part, and Jang-
baek mountain (EL + 405.0 m) of the western part. Also, 
it is reported that Mesozoic granite is mainly distributed, 
in the study area and this granite contains some of Pre-
cambrian gneiss (Kim 2022).

According to precipitation record of the KMA from 
2000 to 2023 (KMA 2023), the average annual precipita-
tion of study area is 1,196  mm, and it is similar to that 
of South Korea (about 1200  mm). So, this region is an 
area where disaster caused by rainfall are rare. However, 
annual average precipitation of 1500 mm, a daily precipi-
tation of 316 mm, and a maximum hourly precipitation 
of 76.5 mm were all record breaking in 2020 when a lot of 
landslides occurred.

Figure 2 shows sampling locations and photographs of 
the landslides that occurred in the study area. Sampling 
locations are colored either red or yellow: the 40 red 
points are locations at which landslides occurred, and the 
45 yellow points indicate sampling locations where no 
landslides occurred. Locations with or without landslides 
were sampled in the one point (in case of occurrence, 
sampling was conducted in the head part) to provide the 
statistical and machine learning analyses with the neces-
sary data for both landslide and non-landslide locations. 
Most landslides in the study area occurred near the for-
est road (Fig. 2) because the slope angle steepens at the 
cut slope, and the soil thickness increases where the con-
struction of the road involved slope filling. The upper 
slopes of forest road comprised weathered soil of biotite 

granite, and the lower slopes of forest road were made up 
of embanked soil which was excavated when construct-
ing forest road. Therefore, soil type of landslides was all 
same with weathered soil of granite, and that it was actu-
ally composed mostly of sand with SW-SP (well grade 
sand-poor grade sand). This led to the mineralogical 
compositions of soil particles being consistent across the 
sampling locations, as the roads had been constructed 
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at the same time. The study area allows specific analysis 
of the influence of topography and physico-mechanical 
characteristics associated with soil compaction on land-
slide occurrence owing to vegetation and rainfall condi-
tions being consistent throughout the area.

The dataset comprises the following information for 
each site: presence or absence of landslide occurrence 
(hereafter abbreviated as occurrence or non-occurrence); 
thickness of the soil layer (hereafter abbreviated as soil 
depth); slope angle; plan curvature and profile curva-
ture; TWI; dry and saturated unit weights of the soil; and 
porosity, specific gravity, saturated water content, friction 
angle, and cohesion of the soil. Sampling was conducted 
in the head parts of areas where landslides occurred. Ele-
vation was not considered, as the sampling points were 
at similar altitudes. Data for landslide occurrence and 
soil depth were obtained from site investigations and 
dynamic cone penetration testing, and physico-mechani-
cal properties (unit weight, specific gravity, porosity, fric-
tion angle, and cohesion) were measured according to the 
test criteria of the American Society for Testing Materials 
(ASTM D2216-10; ASTM D2487-17; ASTM D3080-98; 

ASTM D422-63; ASTM D854-10). Topographic charac-
teristics (slope angle, profile, and plan curvatures) were 
gained from 1:50,000 digital topographic maps of the 
National Geographic Information Institute and SAGA 
GIS software (IBM). The profile and plan curvatures 
describe whether the slope is concave (negative value) 
or convex (positive value) longitudinally and in cross-
section, respectively (Fig. 3). The TWI is an indicator of 
the wet content of the soil and is calculated using Eq. (10) 
(Beven and Kirkby 1979):

where SCA denotes the local upslope area draining 
through a certain point per unit contour length, and θ 
is the local slope in radians. The SCA is calculated using 
multiple flow directions, as the flow may vary according 
to the slope’s direction and gradient. Most of the factors 
are continuous data; the only categorical factor is occur-
rence (1 for occurrence and 0 for non-occurrence).

(10)TWI = ln
SCA

tanθ

Fig. 2 Locations of sampling points and photographs of landslides along the forest road. Landslides have occurred at 40 of the 85 sampling 
locations
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Distribution of data
The values recorded for the various factors that con-
trol landslide occurrence are shown as box-and-whisker 
plots in Fig.  4. The ends of whiskers indicate the maxi-
mum and minimum statistically significant values; any 
values beyond these ranges were discounted as errone-
ous outliers. Boxes span the first and third quartiles (the 
interquartile range); therefore, each box encloses half of 
the data. The horizontal bar in each box indicates the 
median, and the plots depict the distribution of data, 
allowing comparison of the range, interquartile range, 
and median.

The unit weight shows greater whisker and interquar-
tile ranges for non-occurrence cases than for occurrence 
cases, regardless of the conditions being dry or saturated 
(Fig. 4a, b). The ranges of specific gravity are similar for 
occurrence and non-occurrence cases (Fig.  4c). The 
interquartile range and median of porosity are higher 
for occurrence cases than non-occurrence cases; poros-
ity is expected to be proportional to occurrence, as soil 
can hold much water, increasing its weight and reducing 
the resistance force (Fig. 4d). The median saturated water 
content is slightly higher for occurrence cases than for 
non-occurrence cases (Fig.  4e) and is interpreted simi-
larly to the results of porosity. The interquartile range and 
median of soil depth are higher for occurrence cases than 
non-occurrence cases (Fig.  4f ). Those of friction angle 
tend to be lower for occurrence cases than non-occur-
rence cases, whereas cohesion has the opposite tendency, 
being positively correlated with occurrence (Fig. 4g, h). In 
terms of mechanics, cohesion is generally proportional to 
non-occurrence. However, if the friction angle and cohe-
sion were measured from direct shear tests, they would 
be inversely proportional to each other according to the 
Mohr–Coulomb failure criterion (Moon et al. 2020). For 
this reason, the friction angle is inversely proportional to 

occurrence, and cohesion is proportional to occurrence. 
The interquartile range of the slope angle is higher for 
occurrence than non-occurrence (Fig.  4i). The median 
profile and plan curvatures are inversely proportional 
to occurrence, meaning that a number of landslides 
occurred near valleys with concave topography (Fig.  4j, 
k). The interquartile range and median of TWI are higher 
for occurrence than non-occurrence, indicating that soil 
containing water was prone to landslides (Fig. 4l).

Data preprocessing and screening
Data preprocessing and screening for statistical analy-
sis were performed using min–max normalization and 
multicollinearity diagnosis. Min–max normalization was 
performed for the 12 measured independent variables 
(dry unit weight (kN/m3), saturated unit weight (kN/m3), 
specific gravity, porosity (%), saturated water content (%), 
friction angle (°), cohesion (kPa), soil depth (m), slope 
angle (°), profile curvature, plan curvature, and TWI) 
(Eq. (11)):

where Xn , X , Xmin , and Xmax are the normalized, 
observed, minimum observed, and maximum observed 
values, respectively. The normalized results are all 
between 0 and 1, which facilitates direct comparison of 
the effects of each dependent variable (despite their ini-
tially different distributions and units) on the dependent 
variable (i.e., landslide occurrence).

Multicollinearity is a phenomenon in which negative 
effects (such as the overestimation of regression model 
variables and degraded reliability of regression results) may 
occur when highly correlated independent variables are 
used in regression analysis (Ryu 2008). Therefore, collinear-
ity must be assessed before regression analysis. The varia-
tion inflation factor (VIF; Eq. (12)) can be used for this. A 
VIF of ≥ 10 indicates multicollinearity (Kutner et al. 2004).

where R2 is the coefficient of determination. The left side 
of Table 1 lists the estimated multicollinearity among the 
12 independent variables. Those with VIF values of ≥ 10, 
and thus high correlations corresponding to multicollin-
earity, are the dry unit weight ( γd ), saturated unit weight 
( γsat ), specific gravity ( Gs ), porosity ( e ), and saturated 
water content ( w ). These factors can be related using 
Eqs. (13) to (15):

(11)Xn =
X − Xmin

Xmax − Xmin

(12)VIF =
1

1− R2

Fig. 3 Schematic diagrams of a profile and b plan curvature 
(modified after Dikau 1989)
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Fig. 4 Box plots showing the values of properties influencing landslides
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where S is the degree of saturation.
As collinearity depends on the number of independ-

ent variables, factors with high multicollinearity are 
eliminated step by step so that the VIF of all independ-
ent variables could be < 10. Finally, statistical analysis and 
machine learning are performed using nine independent 
variables after removing dry unit weight, specific gravity, 
and saturated water content (the right side of Table 1).

Results of analyses
Logistic regression (LR)
LR analysis uses the nine independent variables filtered 
through data screening. The AUC of the LR model of 
0.776 indicates high prediction ability. In addition, the 
regression model is determined to be valid, because the 
Nagelkerke R-squared value, which describes the sig-
nificance level and reliability of the regression model, is 
0.410, and the Hosmer and Lemeshow test significance 
probability is 0.317. Table 2 shows the regression coeffi-
cient of the above regression model and the influence of 
each independent variable on landside occurrence. Soil 
depth has the greatest influence (25.76%), followed by 
porosity and friction angle.

(13)γd =
Gs

1+ e

(14)γsat = (1+ w)γd

(15)Gs × w = S × e

Structural equation model (SEM)
Figure  5 and Table  3 show the results of SEM analysis. 
The entire model system includes the internal and exter-
nal models. The internal model, comprising physical 
properties, mechanical properties, topographic proper-
ties, and occurrence, is depicted by arrows pointing at 
occurrence, as each latent variable affects this outcome. 
The external model is shown by arrows pointing to the 
independent variables from each latent variable. The 
label on each arrow gives its statistical weight, which is a 
measure of how effectively the latent variable can explain 
the independent or other latent variables. The weight is 
the same as the effectiveness in Table 3.

According to path model theory, the effectiveness 
of each factor is the product of the weight in the exter-
nal model and that in the internal model. For example, 
the effect of soil depth on occurrence is calculated as 
0.945 × 0.579 in the external model and 0.547 in the 
internal model (Table  3). The most influential factor is 
soil depth; the next most influential factors in order are 
porosity, saturated unit weight, and slope angle. The 

Table 1 Variation inflation factors (VIFs) for properties 
influencing landslide susceptibility to assess multicollinearity. 
Although there are 12 factors in the first step, only nine factors 
are left after multicollinearity check (three factors are eliminated)

First step Final step

Factors VIF Factors VIF

Dry unit weight 7672.21 Saturated unit weight 4.61

Saturated unit weight 4089.78 Porosity 4.66

Specific gravity 473.91 Friction angle 1.36

Porosity 3661.84 Cohesion 1.14

Saturated water content 2050.76 Soil depth 1.25

Friction angle 1.49 Slope angle 1.79

Cohesion 1.16 Profile curvature 1.39

Soil depth 1.29 Plan curvature 1.90

Slope angle 2.05 TWI 2.76

Profile curvature 1.47 – –

Plan curvature 1.94 – –

TWI 3.12 – –

Table 2 Results of logistic regression analysis

Rank Observed variables | Coefficient | Influence (%)

5 Saturated unit weight 1.112 8.37

2 Porosity 2.957 22.27

3 Friction angle 2.099 15.81

8 Cohesion 0.350 2.64

1 Soil depth 3.421 25.76

9 Slope angle 0.161 1.21

7 Profile curvature 0.860 6.48

6 Plan curvature 0.880 6.63

4 TWI 1.440 10.84

Table 3 Results of quantified influence of factors on landslides. 
The total influence is calculated by multiplying the influence in 
the external model by that in the internal model

Observed variables Influence Rank

External model Internal model Total

Saturated unit weight 0.870 0.302 0.263 3

Porosity 0.997 0.301 2

Friction angle 8.432 0.019 0.160 5

Cohesion 0.014 0.000 9

Soil depth 0.945 0.579 0.547 1

Slope angle 0.289 0.167 4

Profile curvature 0.018 0.010 8

Plan curvature 0.134 0.078 6

TWI 0.035 0.020 7
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cohesion, profile curvature, and TWI have little effect on 
occurrence.

Reliability assessment of the entire model is based on 
the confidence level using p-values and the goodness of 
fit index (GFI). The statistical criterion evaluating the 
significance of the results at the 95% confidence level is 
considered here: p < 0.05 indicates satisfying the 95% 
confidence level. The GFI is calculated from the average 
communality and/or the geometric mean of the average 

determination coefficient. The criteria for high and low 
confidence in the GFI are the same as those used for 
 R2, as the statistical meaning of GFI is similar to that of 
the determination coefficient. The criteria are as follows 
(Zikmund 2000; Moore et al. 2013; Sanchez 2013):

• Low:  R2 < 0.3,
• Moderate: 0.3 <  R2 < 0.6,
• High:  R2 > 0.6.

The resulting p-value and GFI of the entire model 
are 0.000 and 0.763, respectively, which means that our 
results can be considered statistically significant with a 
“high” confidence grade.

Fig. 5 Results of SEM analysis, in which physical properties, mechanical properties, and topographic characteristics affect landslide occurrence. 
Numbers near each arrow in the external and internal models indicate absolute values of the statistical weight, which quantifies that factor’s effect 
on occurrence

Table 4 Results of hyperparameter optimization using XGBoost

Train and test data ratio 9:1 8:2 7:3 6:4 5:5

learning_rate 0.01 0.01 0.01 0.04 0.02

n_estimators 500 500 500 3 2

max_depth 3 3 3 500 500

gamma 1 2 2 1 1

colsample_bytree 0.5 1 1 0 0

max_delta_step 1 0 0 4 3.0

min_child_weight 1 0.5 0.5 0.5 1.5

reg_alpha 1 0 0 1.5 0

reg_lambda 2.5 2.5 2.5 2.5 0.5

subsample 1 1 1 1 1

scale_pos_weight 1 1 1 2 1

Fig. 6 Results of learning performance for XGBoost prediction 
models using different ratios of training and test data
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Fig. 7 Confusion matrix results for XGBoost prediction models employing each data ratio

Table 5 Results of XGBoost prediction for different ratios of training and test data

Ratio of train and test data Precision Recall F1-score Accuracy AUC 

9:1 Train 0 0.92 0.88 0.90 0.89 0.896

1 0.86 0.91 0.89

Test 0 0.67 1.00 0.80 0.78 0.800

1 1.00 0.60 0.75

8:2 Train 0 0.89 0.92 0.90 0.90 0.896

1 0.90 0.88 0.89

Test 0 0.60 0.89 0.76 0.71 0.694

1 0.80 0.50 0.62

7:3 Train 0 0.93 0.89 0.76 0.90 0.898

1 0.88 0.50 0.62

Test 0 0.71 0.62 0.67 0.62 0.613

1 0.50 0.60 0.55

6:4 Train 0 0.95 0.77 0.85 0.86 0.865

1 0.80 0.96 0.87

Test 0 0.75 0.47 0.58 0.62 0.637

1 0.55 0.80 0.65

5:5 Train 0 0.85 0.85 0.85 0.86 0.857

1 0.86 0.86 0.86

Test 0 0.71 0.68 0.69 0.65 0.646

1 0.58 0.61 0.59
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XGBoost
Hyperparameter optimization, the most critical analysis 
process in machine learning, is first performed by grid 
searching. This involves selecting hyperparameter values 
that exhibit the highest performance by selecting hyper-
parameter candidate values at regular intervals. Hyperpa-
rameter selection uses verification in five layers (Table 4).

Log-loss is used to evaluate the performance of the 
training and test models. The learning performance 
and confusion matrix results are shown in Figs.  6 and 
7, respectively, and Table  5 lists the predictive perfor-
mance results for each model. The learning perfor-
mance results for the prediction model show similar 
performance across most of the training models, but a 
9:1 ratio of training to test data gives the best perfor-
mance. For the test models, using an 8:2 ratio gives the 
best performance. Outstanding predictive performance 
is obtained, as indicated by the accuracy and AUC rang-
ing from 60 to 90% and the difference in accuracy and 
AUC between the training and test models being < 20%. 
For precision and recall, there is a significant trade-off 
in the prediction model that uses all the test data. The 
precision and recall of the model using a 9:1 data ratio 
are both 100%, depending on the label value. Given the 
excessively small proportion of test data, the probabil-
ity of predicting an actual “0” value as “0” or an actual 
“1” value as “1” is considered unreliable. Training–test 
data ratios of 8:2 and 7:3 minimize the trade-off. As a 
data ratio of 8:2 leads to a slightly higher performance 
than 7:3, it is considered optimal for a prediction model 
using XGBoost.

Table 6 lists the influence of each factor in the XGBoost 
8:2 model. Soil depth has the most prominent influence, 
followed by friction angle, slope angle, plan curvature, 
and porosity. The saturated unit weight, cohesion, profile 
curvature, and TWI appear to have no significant influ-
ence in this model.

LightGBM
LightGBM applies grid searching for hyperparam-
eter optimization, which uses verification in five layers 
(Table 7).

For LightGBM, log-loss is used to evaluate the per-
formance of the training and test models. The learning 
performance and confusion matrix results are shown in 
Figs.  8 and 9, respectively, and Table  8 lists the predic-
tive performance results for each model. The learn-
ing performance results for the prediction model show 
that the training model with a 9:1 training-to-test-data 
ratio performs best, similar to the learning performance 
results for XGBoost, and the test model with an 8:2 ratio 
performs best. However, the learning performance of 

Table 6 Each factor’s influence in the XGBoost 8:2 model

Factors Feature 
importance

Influence (%) Rank

Saturated unit weight 0 0 6

Porosity 31 7.1 5

Friction angle 105 24.2 2

Cohesion 0 0 6

Soil depth 164 37.8 1

Slope angle 84 19.4 3

Profile curvature 50 11.5 4

Plan curvature 0 0 6

TWI 0 0 6

Table 7 Results of hyperparameter optimization for LightGBM

Train and test data ratio 9:1 8:2 7:3 6:4 5:5

learning_rate 0.01 0.01 0.01 0.01 0.01

n_estimators 1500 1500 1500 500 500

max_depth 2 2 2 2 2

gamma – – – – –

colsample_bytree – – – – –

max_delta_step 0 0 0 0 0

min_child_weight 0 0 0 0 0

reg_alpha 0 2 2 3 0

reg_lambda 0 0 0 0 0

subsample 1 1 1 1 1

scale_pos_weight 1 1 1 2 1

Fig. 8 Results of learning performance for LightGBM prediction 
models using different data ratios
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Fig. 9 Confusion matrix results for LightGBM prediction models using different data ratios

Table 8 Results of LightGBM prediction for different training and test data ratios

Ratio of train and test data Precision Recall F1-score Accuracy AUC 

9:1 Train 0 0.95 0.98 0.96 0.96 0.959

1 0.97 0.94 0.96

Test 0 0.67 1.00 0.80 0.78 0.800

1 1.00 0.60 0.75

8:2 Train 0 0.90 0.78 0.84 0.84 0.842

1 0.78 0.911 0.84

Test 0 0.64 0.78 0.70 0.65 0.639

1 0.67 0.50 0.57

7:3 Train 0 0.92 0.83 0.87 0.88 0.880

1 0.85 0.93 0.89

Test 0 0.65 0.69 0.67 0.58 0.544

1 0.44 0.40 0.42

6:4 Train 0 0.89 0.65 0.76 0.78 0.787

1 0.72 0.92 0.81

Test 0 0.79 0.58 0.67 0.68 0.689

1 0.60 0.80 0.69

5:5 Train 0 0.78 0.70 0.74 0.76 0.759

1 0.75 0.82 0.78

Test 0 0.74 0.56 0.64 0.63 0.641

1 0.54 0.72 0.62
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the 9:1 test model decreases as learning progresses. The 
predictive performance results show that the accuracy 
and AUC decrease as the proportion of the training data 
decrease in the training and test models. There is a sig-
nificant trade-off in most of the test models among the 
recall, precision, and confusion matrix results. Among 
them, those with 8:2 and 5:5 ratios perform best. Given 
the high proportion of test data for the 5:5 model, a 8:2 
data ratio is considered optimal for the prediction model.

Table 9 lists the influence of each factor on the Light-
GBM 8:2 model. Soil depth is the most influential, fol-
lowed by friction angle, plan curvature, cohesion, 
porosity, slope, profile curvature, TWI, and saturated 
unit weight. However, the model depends markedly on 
the first two factors, which represent 82% of the total 
influence; the other factors have no significant influence 
(each < 7%).

Discussion: results and comparison of methods
Table 10 summarizes the influence of the selected fac-
tors for each analysis method. Soil depth is consistently 
the most influential (> 25%). The rankings of friction 
angle, slope angle, and porosity differ slightly among 

the analysis methods. Friction angle shows uniform 
influence (> 10%) across all the methods. Porosity sub-
stantially influences LR and SEM analyses but has mini-
mal effect on machine learning. Among the machine 
learning methods, only XGBoost is substantially influ-
enced by slope angle. Saturated unit weight, profile cur-
vature, plan curvature, TWI, and cohesion generally 
have small (< 10%) influences.

Soil depth is the most influential factor because it 
relates directly to conditions that may cause landslides. 
The data in section  "The theory of structural equa-
tion model" clearly show its correlation with landslide 
occurrence: soil depth is generally ≤ 2  m in areas with 
no landslide and ≥ 1  m in most areas where landslides 
have occurred. Friction and slope angles are highly influ-
ential, as they directly affect the driving and resistance 
forces of soil (Mehrotra et al. 1992; Budimir et al. 2015; 
Ҫellek 2020). Porosity is rarely considered significant 
when investigating the factors influencing landslides on 
natural slopes. However, when artificial compaction is 
performed, as on forest road slopes, porosity is highly 
influential because it represents the degree of compac-
tion. Unit weight ranks fifth here for artificial slopes 
because porosity and unit weight are inversely propor-
tional. This study finds topographic factors (profile cur-
vature, plan curvature, and TWI) to be insignificantly 
influential because landslides around forest roads are 
more affected by the degree of compaction or resist-
ance force than the concave or convex shape of the slope. 
Cohesion acts only on resistance force in stability anal-
ysis and significantly affects slope activities (Cousins 
1978; Ahmadi-Adli et al. 2014; Lin et al. 2016). However, 
this study attributes insignificant influence to cohesion 
because the sandy (SP to SW) soil in the study area has 
low cohesion, and the calculation of cohesion signifi-
cantly deviated as the Mohr–Coulomb failure criterion 
was applied within a small range (the median value of 

Table 9 Influence of each factor in the LightGBM 8:2 model

Factors Feature 
importance

Influence (%) Rank

Saturated unit weight 0 0 9

Porosity 60 3.2 5

Friction angle 708 37.3 2

Cohesion 118 6.2 4

Soil depth 853 44.9 1

Slope angle 24 1.3 6

Profile curvature 120 6.3 3

Plan curvature 13 0.7 7

TWI 2 0.1 8

Table 10 Summary of influence and rank for analysis methods

Influential factors Influence (%) Rank

LR SEM XGBoost LightGBM Arithmetic mean

Saturated unit weight 8.4 16.8 0 0 6.3 5

Porosity 22.3 19.3 7.1 3.2 13.0 3

Friction angle 15.8 10.3 24.2 37.3 21.9 2

Cohesion 2.6 0 0 6.2 2.2 9

Soil depth 25.8 35.5 37.8 44.9 36.0 1

Slope angle 1.2 0.9 19.4 1.3 8.2 4

Profile curvature 6.5 0.7 11.5 6.3 6.3 5

Plan curvature 6.6 5.2 0 0.7 3.1 7

TWI 10.8 1.3 0 0.1 3.1 7
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cohesion is higher for occurrence sites, whereas IQR and 
whisker are higher for non-occurrence sites; Fig. 4h).

Conclusions
Data for a mountainous area with forest roads were 
acquired through geological surveying, sampling, and 
laboratory testing, and the influence on landslide suscep-
tibility of each measured parameter was analyzed using 
statistical and machine learning methods. The results are 
summarized as follows.

(1) The target area was Sancheok-myeon, Chungju-si, 
where rainfall of 259 mm on August 2, 2020 caused 
several landslides along the forest road in a narrow 
area of approximately 3 km × 4 km. As the area has 
the same rainfall and vegetation conditions, the 
influences of the physico-mechanical characteris-
tics of the soil and topographic characteristics could 
be analyzed precisely.

(2) Geological surveying and sampling were conducted 
at 40 survey points where landslides occurred and 
45 points where they did not. The soil’s physico-
mechanical characteristics and topographic fac-
tors for each survey point were acquired. Only nine 
factors were subjected to statistical analysis and 
machine learning methods.

(3) LR and SEM analysis results showed high accu-
racy, with values of 0.776 and 0.763, respectively. 
XGBoost and LightGBM exhibited outstanding 
performance in predicting landslides, with accu-
racy and AUC of 60%–90%, and differences of < 20% 
between the training and test data.

(4) All analysis methods identified soil depth as hav-
ing the greatest influence on landslide occurrence. 
Friction angle, slope angle, and porosity were also 
selected as influential factors, although they dif-
fered slightly in the rankings of the different analysis 
methods.

As the analysis results of this study are for an area 
across which rainfall and vegetation conditions are 
largely consistent, the influences of the soil’s physico-
mechanical characteristics and the topography were 
analyzed more precisely than in studies comparing land-
slides across multiple regions. The results of this study 
are expected to be useful in the preparation of landslide 
vulnerability maps around forest roads.
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