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Abstract 

Background Landslide susceptibility assessment (LSA) is a crucial indicator of landslide hazards, and its accuracy 
is improving with the development of artificial intelligence (AI) technology. However, the AI algorithms are inconsist‑
ent across regions and strongly dependent on input variables. Additionally, LSA must include historical data, which 
often restricts the assessment to the local scale and single landslide events.

Methods In this study, we performed an LSA for the entirety of South Korea. A total of 30 input variables were con‑
structed, consisting of 9 variables from past climate model data MK‑PRISM, 12 topographical factors, and 9 environ‑
mental factors. Sixteen machine learning algorithms were used as basic classifiers, and a stacking ensemble was used 
on the four algorithms with the highest area under the curve (AUC). Additionally, a separate assessment model 
was established for areas with a risk of landslides affecting areas larger than 1 ha.

Results The highest‑performing classifier was CatBoost, with an AUC of ~ 0.89 for both assessments. Among 
the input variables, distance of road, daily maximum precipitation, digital elevation model, and soil depth were 
the most influential. In all landslide events, CatBoost, lightGBM, XGBoost, and Random Forest had the highest AUC 
in descending order; in large landslide events, the order was CatBoost, XGBoost, Extra Tree, and lightGBM. The stacking 
ensemble enabled the construction of two landslide susceptibility maps.

Conclusions Our findings provide a statistical method for constructing a high‑resolution (30 m) landslide susceptibil‑
ity map on a country scale using diverse natural factors, including past climate data.

Keywords Landslide, Susceptibility model, Stacking ensemble, Machine learning

Introduction
Over 63% of South Korea’s territory is mountainous and 
susceptible to landslides. Additionally, the landslide haz-
ard is continuously rising due to the spread of forests and 
buildings in mountainous areas, increasing the severity of 
damage caused by landslides. Landslides typically cause 
more damage in urban areas, as evidenced by casualties 

and property damage from a landslide in Seoul’s Woomy-
eonsan and Chuncheon’s Majeoksan caused by heavy 
rainfall in July 2011 (Pradhan and Kim 2014; Lee and Kim 
2016). Therefore, it is important to assess the landslide 
susceptibility of the country to prevent economic and 
social losses.

Landslide susceptibility assessment (LSA) can be per-
formed using various methods. Landslide susceptibility 
began to be analyzed statistically in the 2000s with the 
development of Geographic Information System (GIS) 
technology. Researchers have proposed general concepts 
for landslide mapping, such as maps showing spatio-
temporal incidence and landslide prediction (Wang et al. 
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2005; Chacón et al. 2006), and methods to perform clas-
sification using GIS-based zonation into different suscep-
tibilities (Kanungo et  al. 2012). Subsequently, methods 
have been proposed to construct and validate models 
using an analytical hierarchy process (AHP) based on 
expert experience or by weighting input variables based 
on subjective judgment (Yang et  al. 2006; Chae et  al. 
2009; Kayastha et al. 2013). AHP has the advantage of a 
structured decision approach, which includes a disagree-
ment process for variables. However, since experts sub-
jectively judge the weights between variables, objectivity 
and consistency of the model may be impacted.

With landslides increasing due to weather anoma-
lies, recent studies have been seeking to improve accu-
racy by introducing machine learning (ML) technology 
(Ado et  al. 2022). Hong et  al. (2019) performed LSA 
using regression analysis and ML methods; Wang et  al. 
(2021) evaluated the influence of landslide triggering 
factors using a maximum entropy ML model. Ageenko 
et  al. (2022) used support vector machine (SVM), ran-
dom forest (RF), and linear regression (LR) algorithms 
to construct a landslide susceptibility map of the eastern 
region of Denmark’s Jutland Peninsula. Previous studies 
employing ML algorithms used only a small number of 
algorithm types, and the best-performing type was differ-
ent each time. This indicates that the optimal algorithm 
and performance may vary with the regional charac-
teristics of each LSA application. Since LSA constitutes 
important data that can be used as an objective indicator 
to confirm the characteristics of landslides in the target 
area, objectivity and consistency must be ensured by the 
methodology.

Recent studies have shown that LSA using deep neu-
ral networks such as convolutional (CNN) and recurrent 
neural networks (RNN) can outperform LSA using ML 
algorithms. In LSA using CNN algorithms, the core land-
slide location is collected as an aerial photograph or sat-
ellite image, and then a learning model is built together 
with images of landslide risk factors (Sameen et al. 2020; 
Zhang et al. 2022). The RNN family has strengths in pro-
cessing time series data with long temporal dependencies 
and can analyze dynamic changes over time when con-
tinuous information is required, making it useful for LSA 
(Wang et  al. 2020; Ji et  al. 2023). However, LSA using 
deep neural networks is often used in parallel with ML 
algorithms due to the complexity of the algorithm struc-
ture, which makes it difficult to clearly explain the effects 
of landslide triggers.

ML algorithms in most cases perform relatively poorly 
compared to deep neural network algorithms. To over-
come this limitation, recent studies have proposed stack-
ing ensembles of ML algorithms to improve performance 
(Wolpert 1992; Wang et  al. 2011). Hu et  al (2020) used 

four ML algorithms and a stacking ensemble to confirm 
the performance improvement gained by combining two 
or more classifiers. However, since the performance of a 
stacking ensemble depends on the performance of a sin-
gle classifier, there are cases where the performance is 
degraded by the combination of algorithms (Dou et  al. 
2020). The selection process for the single classifier there-
fore plays a very important role in stacking ensembles.

LSA represents the spatial probability of landslide 
occurrence based on a range of input variables. Addition-
ally, the risk of landslide occurrence is mainly influenced 
by past events; therefore, variables that can represent 
long-term historical data are required (Ageenko et  al. 
2022). While the input variables in LSA must be able to 
sufficiently explain the spatial characteristics of land-
slide occurrence points, they do not necessarily have to 
be proportional to the number of characteristics. Rotigli-
ano et  al. (2011) used only 3 variables for their assess-
ment, whereas Rossi et al. (2010) used 51. Furthermore, 
to adequately reflect the spatial characteristics of the 
landslide occurrence points, the spatial resolution of the 
input variables must be guaranteed to a certain level. 
Arnone et  al. (2016) proved that LSA can be effectively 
performed when the spatial resolution of the input vari-
ables is between 10 and 50 m; however, they stated that 
higher resolution does not necessarily lead to better 
performance.

LSA in South Korea has mainly been localized (Kadavi 
et  al. 2019; Hakim et  al. 2022) or focused on individual 
landslide events (Vasu and Lee 2016; Lee et  al. 2017). 
However, susceptibility assessment results may be biased 
if large-scale data on landslide occurrence points are col-
lected from only specific cases or areas (Lin et al. 2021; 
Loche et al. 2022).

Among the factors that trigger landslides, rainfall is 
the most significant. Landslides occur after prolonged or 
intense rainfall that causes water to penetrate the shal-
low stratum within 2 m from the surface and leads to a 
collapse of soil or rock (Kim and Lee 2023). Data on the 
rainfall factor are mainly acquired through numerical 
weather models to generate future data, or from observa-
tion stations to obtain past data. Historical climate data 
that describe the characteristics of rainfall are needed 
for LSA (Sobie 2020), which covers both past and future 
domains. However, many recent studies on landslide sus-
ceptibility either did not consider rainfall data or used 
rainfall data from a single point in time (Bruzon et  al. 
2021; Hodasova and Bednarik 2021; Wang et al. 2021). To 
avoid spatial or temporal bias, LSA must be performed 
on landslide cases and triggering factors occurring in var-
ious regions over a long period.

This study aims to perform LSA and explain the effects 
of input variables for the entire territory of South Korea 
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by constructing an optimal model using a stacking 
ensemble of ML algorithms. This approach was used to 
explain the effects of input variables while aiming for high 
performance. We attempted to use unbiased information 
by collecting landslide cases that occurred nationwide 
over a long period of time. The input variables of the 
model were preprocessed terrain, environment, and cli-
mate data. For the susceptibility model, we selected the 
highest-performing algorithm among the ML algorithms 
and performed an ensemble process, following which 
the influence of input variables was analyzed by variable 
importance. The final constructed sensitivity model was 
applied to input variables across the country to create a 
map of sensitivity to landslides in South Korea.

Materials and methods
Study area
Figure  1 shows a map of South Korea, the target area 
of this study. Landslides in South Korea have mostly 
occurred in thin surface layers (~ 1-m thickness) due to 
rainfall (Kim et  al. 2000, 2020). The frequency of local-
ized heavy rains is increasing in the country, enhancing 
the risk of landslides as well as causing life and property 

damage in cities and residential areas where thin surface 
layers are present.

Most of South Korea’s rainfall occurs from June to 
October, and the increase in heavy rainfall events due 
to the changing weather has caused mountain disasters, 
such as landslides and debris flows, to occur with an 
annual frequency.

Landslide occurrence points
In this study, the postal address data of landslide occur-
rence points from 2011 to 2020 provided by the Korea 
Forest Service were used. Since the address data are 
provided without specific coordinates, geocoding had 
to be performed based on the cadastral map. To this 
end, we designated the corresponding cadastral polygon 
on the cadastral map of Korea and used the centroid of 
the landslides polygon. In South Korea, more than 90% 
of landslides occur during heavy summer rainfall, when 
rainfall-induced ground erosion causes debris flows, 
slides, and land creep on slopes of 10° to 50° (Kim and 
Chae 2009). We therefore focused on landslides caused 
by these external factors. We performed geocoding using 
the centroid of the polygons in the cadastral map, thereby 
constructing a total of 4,347 points (landslide events). We 

Fig. 1 LSA experimental area, covering all of South Korea. A − E represent the administrative districts of South Korea (A: Gyeonggi, B: Gangwon, 
C: Chungcheong, D: Jeolla, E: Gyeongsang). Locations with landslide occurrence over the past 10 years (2011–2020) are depicted by red points 
and locations without landslide occurrence are depicted by green points
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retained only those landslides that occurred between June 
and October, the period of intensive summer rainfall, and 
on slopes of 10° to 50°, and cases with missing addresses 
were excluded, resulting in a total of 3,174 points. LSA 
requires standards not only for points where landslides 
occurred but also for points of non-occurrence. After 
confirming that each cadastral map polygon had an 
extent of at most 1  km, we therefore randomly gener-
ated a non-occurrence point within a range > 2 km from 
each occurrence. This ensured that an equal number of 
occurrence and non-occurrence points was available 
without any two occupying the same cadastral polygon, 
and yielded a total of 6,348 points (Fig. 1). The 3,174 con-
structed landslide data points had varied impact scales. 
While there were small-scale landslides with an impact 
area of 0.01  ha, there were also large-scale landslide 
events with an impact area of up to 20  ha. Since these 
landslides vary in scale, we used separate scale classes 
in constructing the models, as their characteristics were 
expected to differ. As there is no particular standard for 
the scale of landslide impacts in South Korea, a separate 
susceptibility assessment model was built targeting 785 
landslide cases of at least 1 ha size (large).

Terrain data
LSA is strongly influenced by the surrounding terrain 
elements of the area when a landslide event occurs. We 
therefore constructed the input variables using the ele-
vation data to evaluate the terrain elements. For terrain 
data, we used the 30-m spatial resolution digital eleva-
tion model (DEM) data constructed by the United States 
Geological Survey during the shuttle radar topography 
mission (SRTM). The slope, aspect, profile, and plan cur-
vature were derived from the DEM. The slope is calcu-
lated using dx, the difference in elevation from east to 
west, and dy, the difference in elevation from north to 
south. It is then converted to degrees using the arctan-
gent function. The magnitude of the slope is expressed as 
a value between 0° and 90°, with values closer to 90° indi-
cating a steeper slope. At this point, the aspect is deter-
mined by taking the arctangent of the ratio of dy to dx, 
expressing it as an angle in the plane. Aspect values range 
from 0° to 360°, depending on their clockwise direction 
relative to north. Curvature is a variable that indicates 
whether the target location’s terrain is convex or con-
cave. Curvature was denoted by A to I in order on a 3 × 3 
grid, representing DEM values, and the profile and plan 
curvature were calculated using Eqs. (3) and (4), respec-
tively (Table  1). Terrain ruggedness index (TRI) and 
topographic position index (TPI) were calculated using 
N  , representing the central elevation, and Ni , represent-
ing the surrounding eight elevation values. Topographic 
wetness index (TWI) and stream power index (SPI) were 

calculated from As , representing the upslope contributing 
area, and tan β , representing the slope. Valley depth was 
determined as the vertical distance difference between 
the target point and the nearest watershed boundary. Soil 
drainage and effective soil depth were sourced from the 
Korean Soil Information System.

Environmental data
The environmental data were constructed according 
to previous research showing that a closer distance of 
an environmental variable to the landslide occurrence 
point corresponds to a greater contribution to the risk 
of landslide occurrence (Reichenbach et  al. 2018). Line 
data for rivers, strata, and roads were derived from the 
continuous numerical topographic map produced by 
the Ministry of Land, Infrastructure, and Transport, and 
the shortest distance to all pixels was calculated to con-
struct the data. Additionally, since landslide-susceptible 
areas are greatly influenced by surrounding forests, we 
also used forest data as input variables. These consisted 
of forest type (FRTP), diameter class (DMCLS), age 
class (AGCLS), forest density (DNST), and forest height 
(HEIGHT), and were based on the forest map provided 
by the Korea Forest Service. Furthermore, the normal-
ized difference vegetation index (NDVI), the most com-
mon index for representing forests, was constructed 
based on Sentinel-2 satellite imagery taken during clear 
summer days.

Climate data
Most landslides that occur in South Korea are debris 
flows. Therefore, precipitation is the most important 
factor affecting landslides. Precipitation data exist in 
various forms such as actual observations and historical 
climate data. In this study, we employed long-term his-
torical precipitation data to perform LSA. Climate data 
were sourced from the modified Korea parameter ele-
vation relationships on independent slopes model (MK-
PRISM), which uses the past long-term precipitation 
patterns in the target area as input data. MK-PRISM 
employs high-resolution (1  km) gridded observational 
data of the Korean Peninsula. We used data from 537 
observation points, consisting of 75 automated surface 
observing systems and 462 automatic weather stations, 
over the period 2000–2019 (Kim et  al. 2012). Consid-
ering the distance, altitude, aspect, and oceanicity of 
each observation point, the data were interpolated to 
construct grid data at a 1-km resolution. Monthly total 
precipitation (RN) represented the aggregate of total 
precipitation for July, August, and September (RN-july, 
RN-aug, RN-sep) the months when landslides mainly 
occurred during 2000 − 2019. The daily maximum pre-
cipitation (RX1day) and 5-day maximum precipitation 
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(RX5day) were sourced from the maximum values 
recorded between 2000 and 2019. The simple daily 
intensity index (SDII) is the annual total precipitation 
divided by the total number of wet days and was con-
structed based on the total wet days and precipitation 
for 2000–2019. The number of days when daily pre-
cipitation was ≥ 80 mm (R80) was computed  by simply 
summing the number of these days in a year. Number 
of days when daily precipitation is greater than during 

the top 95% (RD95P) and 99% (RD99P) was constructed 
based on the number of those days in the base period.

Construction of ML model
This study consisted of four stages (Fig.  2). In the first 
stage, the raw data for input variables and landslide 
occurrence points were collected. In the second stage, 
the input variables were calculated from each raw data 
source and then preprocessed to be applied to the same 

Table 1 Descriptions of LSA input parameters and calculation formulas

Parameter Description Formula

Topography SRTM Altitude data of 30‑m resolution DEM

Slope Degree of steepness of the slope (1)
tan−1

√

(

dz
dx

)2

+

(

dz
dy

)2

Aspect Direction of the slope (2)
tan−1 dy

dx

Profile curvature Curvature in the direction perpendicular to the direction of inclination with plan 
curvature

(3)
−2

(

DG
2+EH

2+FGH

)

(

G
2+H

2

)

Plan curvature Horizontal curvature with respect to the direction of inclination with lateral curva‑
ture

(4)
2

(

DH
2+EG

2+FGH

)

(

G
2+H

2

)

TRI Index of concave or convex conformation of the terrain (5)
∑

8

i=1
|N−Ni |

8

TPI Index of degree to which a surface is soft or bumpy (6)
N −

8
∑

i=1

Ni
8

SPI Index of the degree of movement and erosion of sediment due to surface runoff (7) As − tanβ

TWI Index of the effects of terrain on runoff flow (8) ln
As

tanβ

Valley depth Difference of vertical distance between water channel network and DEM

Soil drainage Duration or frequency of soil being unsaturated by water

Soil depth Vertical depth of soil layer, at a depth at which the roots of the crop can extend 
sufficiently into the ground

Environment Distance to river Distance from landslide location to water boundary

Distance to fault Distance from landslide location to fault

Distance to road Distance from landslide location to road

FRTP Forest type

DMCLS Forest tree diameter class

AGCLS Forest age class

DNST Forest density

HEIGHT Forest canopy height

NDVI Normalized difference vegetation index‑based on Sentinel‑2 data (9) NIR−Red
NIR+Red

Climate Monthly total 
precipitation 
(RN)

Total precipitation in each month, July–September

RX1day Highest precipitation amount in 1 day (10) max
(

RRij

)

RX5day Highest precipitation amount in 5 days (11) max
(

RRkj

)

SDII Average precipitation on wet days (12)
sum

(

RRwj

wetday

)

R80 Number of days per year when precipitation ≥ 80 mm (13) count(RRij > 80mm)

RD95P Number of days when daily precipitation is greater than during the top 95% 
of the reference period

(14)
sum if

(

RRwj>95%

wetday

)

RD99P Number of days when daily precipitation is greater than during the top 99% 
of the reference period

(15)
sum if

(

RRwj>99%

wetday

)
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model. In the third stage, the ML algorithm was executed 
to tune the model, and in the final stage, landslide suscep-
tibility maps for the entire country area were produced.

LSA was based on the landslide events that occurred 
in South Korea. A diverse set of factors can be consid-
ered in the assessment. According to Reichenbach et al. 

Fig. 2 Flowchart showing the methodology for landslide susceptibility modeling
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(2018), landslides are mainly influenced by geology, 
hydrology, land cover, and topography, and depending 
on the occurrence area, weather and climatic condi-
tions may also be considered. In the present study, the 
three factors of terrain, surrounding environment, and 
climate were used (Table 1). Equations (1) to (15) listed 
in Table 1 represent the formulas for calculating assess-
ment parameters connected to the three fundamental 
factors. All variables underwent a resampling process 
for conversion into the same grid form and were con-
structed as GeoTIFF data with a spatial resolution of 
30 m (Fig. 3).

The constructed susceptibility model utilized 16 ML 
algorithms supported by the Python library Pycaret 
(Table 2). Pycaret, which applies auto-machine learning, 
significantly reduces the processing time by automating 
tasks such as model selection and hyperparameter tun-
ing, which are required for a single ML. Additionally, it 
allows the simultaneous use of libraries previously used 
for ML in Python development environments, such as 
Scikit-learn, XGBoost, and SpaCy.

The parameters for each ML algorithm were deter-
mined using K-fold cross-validation without going 
through a specific pipeline. Each ML algorithm crossed 
various parameters to automatically select the best per-
formance case. Typically, ML algorithms divide training 
and validation data in a 50–50 to 90–10 ratio, depending 
on the conformation of the training data (Joseph 2022). 
Since we used 3,174 cases of 10-year landslides and a 
total of 6,348 cases, including non-occurrence cases, in 
our training model, we decided that sufficient training 
data were available. We also decided to use a 70–30 ratio 
to more rigorously validate the training model.

This study used the stacking ensemble approach, based 
on the ensemble with regard to the results of each ML 
algorithm. Stacking ensemble, also known as stacked 
generalization, is an ensemble learning technique that 
combines multiple classification or regression models 
via a meta-classifier or meta-regressor. The fundamen-
tal principle is to learn from the prediction of various 
base models and then to use another model to combine 
these predictions, aiming to achieve better generalization 
performance than could be achieved by any single base 
model (Wolpert 1992). An ensemble of ML algorithms 
has higher performance compared to a single algorithm, 
as it combines the outputs of different algorithms and 
compensates for their prediction errors (Rokach 2016; 
Kardani et  al. 2021; Chatterjee and Byun 2022). The 
stacking ensemble is divided into basic classifiers, con-
structed through multiple ML algorithms, and the meta 
classifier, used to combine the basic classifiers. The core 
process of the stacking ensemble consists of acquiring the 

training data for the meta-classifier based on the K-fold 
cross-validation technique. The results of the basic clas-
sifiers become individual sets of training data, and the 
user determines the weights for the K-fold in the stacking 
ensemble process, ultimately retraining through the meta 
classifier.

Performance evaluation
We used the area under the curve (AUC) of the receiver 
operating characteristics (ROC) curve to evaluate the per-
formance of the landslide susceptibility model. The ROC 
curve represents the model’s performance at all threshold 
values for binary classification, and AUC represents the 
degree or measure of separability. A higher AUC in the 
binary classification corresponds to a better prediction per-
formance of landslide susceptibility. Table 3 shows the defi-
nitions of the four measurement classes (true positive (TP), 
true negative (TN), false positive (FP), false negative (FN)) 
used in the confusion matrix.

We also calculated several secondary statistics for evalu-
ation: recall, false positive rate (FPR), accuracy, precision, 
F1-score, Kappa, and Matthews correlation coefficient 
(MCC). Recall denotes the ratio of correctly predicted 
positive observations to actual positives. FPR is the ratio of 
incorrectly predicted positive observations to total actual 
negatives, indicating the probability that a false alarm is 
raised while the actual condition is negative. Accuracy 
is the ratio of correctly predicted observations to total 
observations, offering an intuitive measure of overall per-
formance but potentially misleading in imbalanced data-
sets. Precision is the ratio of correctly predicted positive 
observations to total predicted positives, emphasizing the 
accuracy of positive predictions, which is important when 
the cost of false positives is high. The F1-score is the har-
monic mean of precision and recall, balancing the trade-off 
between the two and providing a single metric for uneven 
class distributions. Kappa is a statistic that compares an 
observed accuracy with an expected accuracy (defined as 
random chance), offering a measure of agreement or con-
sistency in classification tasks beyond chance. In the cal-
culation, P(e) represents the hypothetical probability of 
chance agreement between the observed ratings and the 
predicted classifications. MCC is a correlation coefficient 
between the observed and predicted binary classifications, 
taking all four confusion matrix categories into account 
and providing a balanced metric suitable for imbalanced 
datasets. The calculations for deriving these metrics are 
shown in Eqs. 16–22.

(16)True Positive Rate (Recall) =
TP

TP + FN
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Fig. 3 Pre‑processed images for the landslide susceptibility model parameters
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(17)False Positive Rate =
FP

FP + TN

(18)Accuracy =
TP + TN

TP + TN + FP + FN

(19)Precision =
TP

TP + FP

The ROC is calculated using Eq. (16) for the true posi-
tive rate (TPR) and Eq. (17) for FPR (Bradley 1997). The 
ROC curve plots all threshold values, using FPR on the 
x-axis and TPR on the y-axis. The closer the shape of the 
curve approaches to the upper-left corner, the better the 
performance of the model.

(20)F1score = 2 ·
Recall · Precision

Recall + Precision

Kappa =
Accuracy− P(e)

1− P(e)

(21)

P(e) =
(TP + FP) · (TP + FN ) · (FN + TN ) · (FP + TN )

TP + TN + FP + FN

(22)

MCC =
TP · TN − FP · FN

√
(TP + FP) · (TP + FN ) · (TN + FP) · (TN + FN )

Table 2 Description of LSA input parameters

Symbol Model Description References

ADA Adaptive boosting Boosting basic algorithm initially generates a weak learner and weights it 
sequentially

Freund and Schapire (1997)

CatBoost Categorical boosting Combines boosting with ’target encoding’ to improve categorical data pro‑
cessing performance that was vulnerable in traditional boosting algorithms

Prokhorenkova et al. (2018)

DT Decision tree Classifies variables into nodes based on classification criteria and recursively 
classifies the process

Dummy Dummy classifier A simple comparison between training and prediction data. Builds a baseline 
for model performance comparison, but not for actual prediction

ET Extremely randomized tree Uses the entire data without a bagging process in the structure of RF 
and randomly generates node branches

Geurts et al. (2006)

GBC Gradient boosting Boosting basic algorithm to predict the residual of the previous step sequen‑
tially from the initial weak learner

Friedman et al. (2001)

KNN K nearest neighbors Determined by a majority vote of the nearest k data of the target

LDA Linear discriminant analysis Assumes that all classes share the same covariance matrix, i.e., have a linear 
structure, by applying a Bayes rule that maximizes the probability that a given 
data belongs to each class

lightGBM Light gradient boosting While other GBC algorithms apply tree depth minimization through the level‑
wise method, only certain trees are developed through the leafwise method 
to minimize loss and shorten the time

Ke et al. (2017)

NB Naive Bayes Classified on a Bayes basis with the simple assumption that all characteristics 
are independent of each other

Lewis (1998)

QDA Quadratic discriminant analysis Unlike LDA, assumes that each class is a different covariance matrix. There‑
fore, the crystal boundary is in the form of a quadratic curve

RF Random forest Samples data through the bootstrap process to perform prediction 
and aggregation with multiple decision trees; allows to measure the impor‑
tance of each data

Breiman (2001)

Ridge Ridge classifier Performed based on linear regression methods, but adds a normalization 
process called ’L2 regularization’ to avoid overfitting

SVM Support vector machine Distinguished by hyperplane between the two data, and regression 
is also possible based on hyperplane. Basic ’linear model’ and ’RBF kernel 
model considering multidimensional data’ are used

Cortes and Vapnik (1995)

XGBoost Extreme gradient boosting Improves performance through normalization, pruning, and missing value 
processing in traditional GBC

Chen et al. (2016)

Table 3 Performance measurement classes used in confusion 
matrix

Predicted: No Predicted: Yes

Training: No True negative (TN) False positive (FP)

Training: Yes False negative (FN) True positive (TP)
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The details of the computing environment used for 
implementation and performance evaluation are shown 
in Table 4. Based on the performance comparison among 
the 16 ML algorithms, the basic classifiers in this study 
were constructed using the four algorithms with the 
highest AUC. Of these four algorithms, the one with the 
best performance was used in the meta classifier.

We used SHapley Additive exPlanations (SHAP) val-
ues to explain the effect of the input variables of LSA. 
SHAP values are derived from the concept of Shapley 
values in cooperative game theory, aiming to explain 
the output of machine learning models by assigning 
an importance value to each feature for a particular 
prediction. These values are calculated by consider-
ing all possible combinations of features, determining 
the marginal contribution of each feature to the pre-
diction, and averaging these contributions to provide 
a fair and consistent attribution. This approach offers 
insights into model predictions and ensures that the 
contribution of each feature is accurately and fairly 
represented, making SHAP a powerful tool for inter-
preting and understanding complex models in the 
realm of explainable AI. In machine learning, SHAP 
values are calculated using the following formula:

where ϕi(v) is an integrated measure of the SHAP value 
for the ith individual variable, and S is a combination 
of variables other than the i th variable, constituting 
a set to represent the effect of i . N  is the total number 
of variables included in the model. v(S ∪ {i})− v(S) is a 
predictive function of the machine learning model. The 
difference between the inclusion and absence sets of i 
is calculated to represent the marginal contribution of 
i . |S|!(N−|S|!−1)!

N !
 is a weighting factor that gives weight to 

each set of variables. In essence, the SHAP value for vari-
ables in machine learning represents the average impact 
of including that feature on the prediction compared to if 
it were not included, and weighted and summed over all 
possible combinations of other variables. This quantifies 

(23)
ϕi(v) =

∑

S ⊆ N\{i}
|S|!(N − |S|! − 1)!

N !
[v(S ∪ {i})− v(S)]

the contribution of the variables while considering all 
interactions with other features, which renders SHAP 
values a powerful tool for interpretability in complex 
models.

Results
Table  5 shows the susceptibility model’s performance 
scores, considering all landslide events regardless of the 
impact size. The AUC performance was highest for Cat-
Boost at 0.891, followed by lightGBM (0.886), XGBoost 
(0.885), and RF (0.885). CatBoost also showed the high-
est scores in performance metrics other than AUC, 
including accuracy, F1-score, Kappa, and MCC. How-
ever, Catboost’s Recall was about 0.009 lower than that 
of lightGBM and its Precision was about 0.002 lower than 
that of ET. Overall, gradient boosting algorithms showed 
high AUC and excellent performance, with AUC values 
of at least 0.9. AUC was 0.857 for GBC and 0.8278 for 
ADA, showing that specifically those boosting algorithms 
incorporating gradients had superior performance. The 
AUC of SVM and Ridge was 0 due to a limitation of using 
Pycaret, which returns a zero value if the algorithm does 
not support the tool ’predict_proba’ for calculating pre-
diction probabilities. However, SVM and Ridge yielded 
accuracies of 0.629 and 0.713, respectively, suggesting a 
relatively poorer performance.

Table  6 shows the susceptibility model’s performance 
scores, considering only landslides of relatively large 
impact scale (impact size ≥ 1  ha). CatBoost showed the 
highest AUC at 0.89, followed by XGBoost (0.889), Extra 
Tree (0.887), and lightGBM (0.883); this constituted a 
slight decline compared to the model performance when 
all landslides were included. The AUC of CatBoost, 
which showed the highest performance, also was lower 
by approximately 0.019 compared to that scenario. Over-
all, algorithms based on gradient boosting, as well as 
the tree ensemble-based Extra Tree, demonstrated high 
performance.

Landslide susceptibility maps were created based on 
the top four models by performance (Fig.  4). The land-
slide-susceptible areas, based on all landslide events, pri-
marily appeared around Gyeonggi (A in Fig. 1), northern 
Chungcheong (C in Fig.  1), Jeolla (D in Fig.  1), and the 
southeastern coast of Gyeongsang (E in Fig. 1).

Landslide-susceptible areas primarily appeared in for-
ested areas, centered around slopes of 10° to 50°. Moun-
tain peaks were classified as non-susceptible areas; 
however, as the slopes became gentler, susceptibility 
gradually developed. The central regions of Gangwon 
(B in Fig. 1) and Gyeongsang mostly appeared non-sus-
ceptible. The distribution pattern of landslide-suscep-
tible areas showed similar characteristics to the spatial 

Table 4 Specifications of implementation and performance 
evaluation environment

Name Specification

CPU AMD Ryzen 7 2700X 8‑core, 3.7 GHz

GPU NVIDIA GeForce GTX 1660 4 GB

RAM 64 GB

OS Windows 10 Education 64‑bit

Language Python 3.7.11
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distribution of landslides that occurred in the country 
over the past 10 years.

Landslide-susceptible areas based on large landslide 
events were mainly concentrated in Gyeonggi and Jeolla. 
Due to their smaller impact areas, those areas present in 
the susceptibility maps for all landslide events on the east 
coast and southeastern coast of Gyeongsang were mostly 
classified as non-susceptible in the map of large landslide 
events, with the exception of a small proportion.

A common feature of all maps was that the boosting-
based algorithms clearly distinguished between landslide-
susceptible and non-susceptible areas without creating 
any ambiguous regions. This is believed to be due to the 
classification of all ambiguous parts that could degrade 
performance by dichotomy during the learning process of 
boosting algorithms. In contrast, tree-based algorithms, 
such as RF or Extra Trees (Fig. 4), also generated ambigu-
ous areas, possibly due to the inherent randomness of the 
tree structures. The SHAP value and ROC curves for the 

classifiers that showed the highest performance among the 
basic classifiers for constructing the landslide susceptibil-
ity model are shown in Figs. 5 and 6, respectively. Magni-
tude of SHAP values is shown by color (blue to red for low 
to high) and input values increase from left to right.

For both all and large landslide events types, distance 
from road and RX1day were the most influential vari-
ables. Blue features for distance from the road are clus-
tered around SHAP values of 0.5 and above, while red 
features are clustered around SHAP values of -1.0 and 
below. This indicates a correlation between increasing 
distance from roads and lower landslide susceptibility. 
Blue features for RX1day are clustered around SHAP val-
ues of -0.5 or less, while red features are clustered around 
SHAP values of 0.5 or more. This indicates a positive cor-
relation with landslide susceptibility.

Soil depth, SRTM, River, and FRTP were most influ-
ential for all landslide events, while SRTM, soil depth, 
FRTP, and RN-aug were most influential for large events. 

Table 5 Performance scores for all landslide events, regardless of the impact scale



Page 12 of 17Lee and Lee  Geoenvironmental Disasters            (2024) 11:7 

Deeper soil depth corresponded to greater landslide 
susceptibility. Distance from rivers functioned simi-
larly to distance from roads, with landslide suscepti-
bility decreasing at increasing distance. Greater FRTP 
corresponded to greater landslide susceptibility, but the 
majority of values are concentrated in the center of the 
graph, indicating no substantial impact in either direc-
tion. The blue features for RN-aug were mainly clustered 
around SHAP values below 0, while the red features were 
mainly clustered around SHAP values above 0. This indi-
cates a positive correlation with landslide susceptibility. 
However, RN-aug had mixture of SHAP values around 
0, indicating that the relationship may be ambiguous. 
This phenomenon of ambiguous effect on landslide sus-
ceptibility was also observed for input variables such as 
RN-sep, RN-july, RX5day, profile curvature, RD95P, R80, 
and NDVI. For SDII, fault, HEIGHT, and DNST, greater 
values corresponded to lower landslide susceptibility, 
while the opposite applied to slope. Figure  7 shows the 
final landslide susceptibility map produced through 
the meta-classifier’s ensemble. In both assessments, 

CatBoost showed the highest AUC and was chosen as the 
algorithm for the meta-classifier. The ensemble results of 
the susceptibility model for all landslide events showed a 
tendency to mitigate the assessment of areas previously 
determined as risky.

In some western and northern regions of Gyeonggi, 
all areas, including mountain peaks and foothills, 
appeared to be susceptible. However, in the ensemble 
susceptibility map, areas corresponding to mountain 
peaks and ridges were mostly excluded from suscepti-
ble areas. Moreover, the areas in Gyeonggi, Jeolla, the 
east coast, and the southeastern coast of Gyeongsang 
that are prone to soil collapse due to precipitation, such 
as foothills, mainly appeared susceptible. The ensemble 
results for large landslide cases also showed a similar 
pattern. In the susceptibility map for large landslide 
events, not only the foothills but also high mountain 
areas, including mountain peaks and ridges, appeared 
susceptible, thus failing to fully reflect the charac-
teristics of landslide occurrence points. However, in 
the ensemble results, the assessment of these parts 

Table 6 Performance score for landslides with impact scale greater than 1 ha
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Fig. 4 Landslide susceptibility map for the last 10 years (2011–2020) generated with a basic classifier by the top four machine learning algorithms 
based on AUC. a All landslide events, b large landslide events

Fig. 5 SHAP value of landslide susceptibility model with basic classifier. a All landslide events, b large landslide events
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was mitigated, and some mountain peaks and ridges 
appeared as non-susceptible areas.

Discussion
For all landslide events and as well as only large events, 
gradient boosting showed relatively high performance, 
and the CatBoost algorithm yielded the highest per-
formance. This may be because CatBoost is not only 

a gradient-boosting algorithm but is also particularly 
suited for categorical variables. LSA analyzes which areas 
are susceptible, targeting landslides that occurred in the 
past rather than predicting where landslides will occur in 
the future; therefore, input variables reflecting long-term 
characteristics are required. Because such data inevitably 
include many categorical variables, CatBoost appears to 
have excellent performance in this respect.

Fig. 6 ROC curve of landslide susceptibility model with a basic classifier. a All landslide events, b large landslides events

Fig. 7 Landslide susceptibility map during the last 10 years (2011–2020) generated with meta classifier. a All landslide events, b large landslide 
events
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A number of recent studies have attempted to improve 
the performance of landslide susceptibility models using 
AI techniques. Hu et  al. (2020) and Huan et  al. (2023) 
used stacking ensembles but only compared combi-
nations of ML algorithms and only provided limited 
descriptions of input variables. Li et al. (2022) attempted 
to maximize landslide susceptibility model performance 
by using a deep neural network and a stacking ensemble 
at the same time. However, a limitation of deep neural 
networks has always been their requirement for a strict 
variable selection process in the preliminary stage, which 
suffers from the difficulties of clearly determining the 
effects of variables when building the model. Neverthe-
less, in this study, we were able to quantitatively deter-
mine the impact of numerous variables on landslide 
susceptibility using SHAP values.

The locations of landslides that occurred in South 
Korea over the past 10  years show a clear occurrence 
pattern. However, SHAP value distribution suggests that 
different variables were both positively and negatively 
correlated with susceptibility (Fig.  5). For this reason, 
while input variables used in the LSA apparently had an 
effect on landslide susceptibility, it was difficult to deter-
mine critical input variables. This applied to all aspects of 
the assessment and was not limited to specific variables 
or models. The reasons for this may be twofold. First, 
the SHAP values alone are not sufficient to explain the 
impact of the variables. Variables such as distance from 
roads and RX1day clearly had directional effects (Fig. 5) 
that sufficiently explained their impact. However, vari-
ables such as FRTP showed ambivalent directionality, 
although they were overall less impactful. Since such 
categorical variables do not lend themselves to a linear 
form of outcome, additional analysis techniques should 
be integrated. This is left as a task for our future research. 
Second, the limited accuracy of the landslide locations 
and the spatial resolution of the input variables likely 
were an issue. Since the landslide occurrence locations 
were determined from postal addresses, errors of sev-
eral tens of meters must be expected even if converted 
to coordinates using a cadastral map. The spatial resolu-
tion of the input data used in this study is 30 m; hence, 
such errors cannot be sufficiently reflected. Overcoming 
this limitation is a challenge that must be solved to create 
a high-precision landslide susceptibility map. In future 
work, we intend to prepare an improved training data 
construction method to identify the effect of input vari-
ables on susceptibility.

Conclusion
This study constructed a model based on ML algo-
rithms to perform a nationwide LSA of South Korea. 
A total of 30 input variables were constructed from 12 

topographical, 9 environmental, and 9 climatic factors 
in three ranges to construct an effective model. Sixteen 
ML algorithms were used to quantitatively evaluate per-
formance based on AUC, and an ensemble analysis was 
performed using four algorithms that showed superior 
performance. Additionally, a separate model was con-
structed for landslide events with a large impact area.

The most important element in an LSA is the informa-
tion about the location of landslide occurrences. The rel-
evant information covering the past 10 years allowed us 
to acquire sufficient data, however, there were shortcom-
ings in terms of location accuracy. Ultra-high-resolution 
satellite images are as of recently being produced by vari-
ous countries, and their numbers are rising. By support-
ing higher spatial resolution than that of satellite image 
sources like Landsat-8 (30 m) and Sentinel-2 (10 m), this 
imagery is expected to enhance the accuracy of landslide 
occurrence location data. Our future studies will focus 
on using these high-resolution satellite images in our 
susceptibility assessment model and to derive informa-
tion on geoengineering works undertaken to build roads, 
apartments, parking lots, etc.
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