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Abstract
Background  Earthquake is one of the most destructive natural disasters, which cause immediate and long-term 
changes to the river systems. This research aimed to examine the immediate and five-year impacts of the 2015 Ranau 
Earthquake (6.0 Mw) on river systems in Malaysian state of Sabah, a region of low earthquake hazard.

Methods  We used object-based classification on Landsat 8 (2014 and 2015) and Sentinel-2A (2020) satellite 
imageries to derive land cover time series for investigating the impacts on the riparian areas.

Results  The earthquake removed vegetation in the riparian zones of four rivers, the highest being the Penataran 
River (69.21 ha). During the immediate impact period (2014–2015), river bar formation occurred in all rivers, with the 
largest increase occurring in the Kadamaian River (56.97 ha), followed by the Panataran River (54.36 ha), which had 
no river bar before the earthquake. The river bar of the Kadamaian River continued to increase, whereas the river 
bar of the Panataran River decreased five years after the earthquake. Land cover transition analysis revealed that 
78.39 ha of vegetation, barren land, and river water areas changed to river bars in the Kadamaian riparian area during 
the immediate impact period. Except for 26.87% of river bars in the Kadamaian riparian area in 2015, most river bars 
transitioned to other land cover types five years later. During the period of immediate impact, 22.05 ha of vegetation 
and 10.71 ha of river water were transformed into river bars along the Penataran River. Five years later, except for 
16.2 ha, all river bar areas had transitioned to other cover types. Additionally, 17.7 ha of new river bars were formed. 
This study provides crucial data on post-earthquake land cover changes, particularly river bar formation and changes, 
for assessing the earthquake impacts on the river systems and supporting impact mitigation.
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Introduction
Earthquakes are among the most destructive natu-
ral disasters. Strong vibrations during an earthquake 
cause ground fissures or fractures. Depending on spa-
tial proximity to the fissures, the acceleration and strain 
in different directions can cause irreversible damage to 
man-made structures, such as tunnels (Liu et al. 2019). 
A strong earthquake could trigger large-scale land-
slides, causing significant natural environmental changes 
(Ansari et al. 2016). Besides the earthquake’s intensity, 
magnitude, and focal depth, landslides depend mainly 
on the geology and local topography. Steep slopes with 
unstable rock formations are more susceptible to earth-
quake-triggered landslides that deposit massive amounts 
of sediment and debris in river systems (Basharat et al. 
2021; Mahmood et al. 2015). This sudden influx of mate-
rial may cause flooding and alter the river’s morphology 
by accelerating erosion and altering the geometry of the 
channel. Complicating matters, these are all additional 
factors to the naturally occurring drivers of mass move-
ment, namely climate, weathering, streamflow, and other 
characteristics such as soil type, vegetation, and land-
cover that influence geomorphological changes in an 
area (Nainar et al. 2017; Sidle et al. 2006). Nevertheless, 
Xue et al. (2013) discovered that significant mass move-
ments were governed by episodic seismic events rather 
than these recurrent factors. In addition to the immedi-
ate effects on river geometry, there have been reports of 
long-term land cover changes due to accelerated erosion 
and deposition (Balamurugan and Aravind 2015; Ishihara 
and Tadono 2017; Rojas et al. 2013; Wang et al. 2022).

Mapping of land cover changes due to a destructive 
earthquake is crucial for post-earthquake land use plan-
ning and management. Satellite remote sensing, par-
ticularly medium-resolution satellite sensors, is a highly 
effective technology for monitoring the state of the earth’s 
surface because of its capacity to provide consistent and 
high-quality satellite data that repeatedly covers a large 
area. Medium-resolution imageries such as Landsat data 
have been effectively used to quantify land cover changes 
in the aftermath of earthquakes such as the 2001 Gujarat 
Earthquake (Balamurugan and Aravind 2015), the 2011 
Tohoku Earthquake (Ishihara and Tadono 2017), and the 
2015 Nepal Earthquake (Fan et al. 2019). Despite the fact 
that it is essential to analyze the dynamics of land cover 
and river channel changes for ecosystem restoration, the 
vast majority of studies only address the overwhelming 
immediate impact of catastrophic earthquakes (Fan et al. 
2019; Ishihara and Tadono 2017).

Land cover changes can be detected and monitored via 
spectral change analysis or post-classification comparison 
analysis. Spectral change detection examines the physi-
cal changes between imageries related to the spectral 
signature of the land surface, whereas post-classification 

(map-to-map) comparison compares multi-temporal sat-
ellite maps with an overall accuracy equal to the product 
of the individual accuracies (Phua et al. 2007). The post-
classification comparison method is prevalent because it 
permits monitoring of the land cover trajectory over the 
change period (Kamlisa and Bürger-Arndt 2016). This 
method classifies satellite time series using pixel-based 
or object-based classification approaches. Pixel-based 
classification analyses the spectral information of indi-
vidual image pixels, whereas object-based image analy-
sis aggregates image pixels into spectrally homogeneous 
segments of image objects by user-defined parameters, 
such as scale parameter, compactness, and shape, and 
then classifies the individual image objects (Liu and Xia 
2010). Object-based Image Analysis (OBIA) incorporates 
spatial, textural, and neighborhood relations in classifi-
cation, which significantly reduces the “salt and pepper” 
effect associated with the pixel-based approach (Blaschke 
2010; Yu et al. 2016; Zhou et al. 2008). Several compara-
tive studies concluded that the object-based classification 
approach is superior to the pixel-based approach (Li et al. 
2016; Phua and Tsuyuki 2021).

The recent integration of deep learning with OBIA rep-
resents a significant advancement in satellite image clas-
sification (Guirado et al. 2021; Liu et al. 2021; Timilsina 
et al. 2020). Employing deep learning alongside OBIA 
requires data transformation to specific data structures 
for training deep learning models. The needs of extensive 
computation and hardware capacity (Vali et al. 2020) and 
a large training dataset to capture different in-class varia-
tions (Azeez et al. 2022) could prevent its operational use 
in monitoring post-earthquake land cover changes. OBIA 
with deep learning models has shown good performance 
with high-resolution satellite imageries (Timilsina et al. 
2020). However, the spatial resolution of moderate-reso-
lution satellite imageries may be insufficient for the clas-
sifier (Vali et al. 2020).

Sabah, located in the northern portion of Borneo, has 
a low earthquake hazard because it is located far from 
major plate boundary faults (Wang et al. 2017). Active 
faults, including thrust faults, strike-slip faults, and nor-
mal faults, are associated with earthquakes in Sabah 
(Tjia 1978, 2007; Tongkul 1989, 2017; Wang et al. 2017). 
According to the USGS earthquake database, approxi-
mately 67 low- to moderate-magnitude earthquakes 
were recorded onshore and offshore Sabah from 1900 
to 2019. Most of Sabah’s earthquakes with magnitudes 
below 5.0 Mw were in Ranau and Lahad Datu (Tongkul 
2021). On June 5, 2015, Ranau was shaken by a 6.0 Mw 
earthquake. This seismic event continued for approxi-
mately 30 s. It was detectable as far as 400 km from the 
epicentre, which, situated nearly 10  km deep, was the 
most significant earthquake in Malaysia since the Mw 6.2 
Lahad Datu earthquake in 1976 (Adnan and Harith 2017; 
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Tongkul 2016). According to Rosli et al. (2021), the pri-
mary hazard of the earthquake involved direct geological 
failures, which was observed at the foot slope of Mount 
Kinabalu, the tallest mountain in the region and the cen-
trepiece of Kinabalu Park (UNESCO World Heritage Site. 
Widespread rockfalls and numerous landslides were trig-
gered by the mainshock and a series of aftershocks near 
Mount Kinabalu, forming a temporary landslide dam. 
The secondary hazard identified as debris flow occurred 
along the river channels. Rosli et al. (2021) reported two 
debris flows, i.e. the Mesilau watershed of Kundasang on 
the Southeast flank of Mount Kinabalu and the Kada-
maian watershed of Kota Belud, located on the north-
west flank of Kota Belud. A significant debris flow in the 
Mount Kinabalu area on June 13, 2015, led to the deposi-
tion of large amounts of mud and loose boulders along 
the river channels (Sharir et al. 2022).

As a result, significant amounts of enormous boulders, 
rocks, gravel, and sand were transported and deposited 
along the river channel, forming river bars, particularly 
in the downstream areas of the Kota Belud district. River 
bars are elevated but shallow sections of the riverbed’s 
topography that are created by sediment deposition. 

River bars are visible during periods of low flow and can 
be migratory or stationary (Wright and Crosato 2011). 
According to Croissant et al. (2019), debris left on hill-
slopes after earthquakes is only expected to remain sta-
tionary for a brief period. Although the 2015 Ranau 
earthquake has substantially altered river systems in the 
Kota Belud district, the impacts have not been quanti-
fied. Using multi-temporal satellite imageries, our study 
aimed to investigate the earthquake-induced land cover 
changes in the impacted river systems of the Kota Belud 
district. The OBIA was used to classify satellite imager-
ies of pre-earthquake, immediate (approximately 1 year), 
and five-year impacts. We analyzed and compared the 
changes in land cover caused by earthquakes in the ripar-
ian areas of five rivers in order to identify the rivers with 
the greatest impact. Further land cover transition analy-
ses of river bars in these rivers were performed to deter-
mine the immediate and five-year impacts.

Materials and methods
Study area
Sabah is located in the northern part of Borneo Island, 
on the Eurasian Plate (Fig.  1). The study area is located 

Fig. 1  Location of the study area, Kota Belud, Sabah, Malaysia
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in Kota Belud district (WGS 1984 UTM Zone 50  N 
436,725 m E 702,289 m N), Sabah, Malaysia. Kota Belud 
has an area of approximately 1,386 km2. The climate is 
equatorial, with high temperatures and abundant rainfall 
all year round. The adjacent weather station shows a daily 
temperature between 32.2  °C and 44.3  °C and a mean 
annual precipitation of 2,547.2  mm (World Weather 
Information Service, 2010). The study area is influenced 
by the northeast (November-March) and southwest 
(late May-September) monsoons. The northeast mon-
soon brings heavy rainfall and strong winds, though the 
effects are less severe on the west coast. The southwest 
monsoon is characterised by lower humidity and rainfall 
in the west coast. Inter-monsoon periods have relatively 
calm winds with frequent thunderstorms in the after-
noon. The elevation within the district ranges from close 
to sea level to over 4000  m above sea level. The topog-
raphy of these high-elevation areas is typically rugged, 
comprising steep hillslopes and deep valleys. Mount 
Kinabalu, at 4,095.2 m, is the highest mountain between 
the Himalayas and New Guinea. This mountain is located 
in Kinabalu Park (75,370 ha), a World Heritage Site. Five 
rivers in Kota Belud, namely the Wariu River, Penataran 
River, Kilambun River, Tohubang River, and Kadamaian 
River, originate from Mount Kinabalu (Fig. 2).

Pre-processing of multi-temporal satellite imageries
Two imageries of Landsat 8 Operational Land Imager 
(OLI) (April 2014 and October 2015) and imagery of Sen-
tinel-2 A Multispectral Instrument (MSI) (August 2020) 
were acquired from the United States Geological Service 

(USGS) Earth Explorer (http://earthexplorer.usgs.gov) 
to analyze the earthquake-induced land cover changes 
in one-year (immediate impact) and five-year (five-year 
impact) change periods. Radiometric correction included 
converting a digital number (DN) to top-of-atmosphere 
(TOA) reflectance and removing atmospheric and topo-
graphic effects. All imageries were georeferenced to the 
same map projection system (Universal Transverse Mer-
cator Zone 50 N). These satellite imageries were contami-
nated by clouds to varying degrees, so multiple scenes 
from the same year were downloaded and mosaicked to 
create a cloud-free or nearly cloud-free image in ArcGIS 
for each year. The watersheds of five rivers (Wariu River, 
Kadamaian River, Penataran River, Kilambun River and 
Tohubang River) were generated using the Shuttle Radar 
Topography Mission (SRTM) Digital Elevation Model 
(DEM) and combined as the study area polygon, which 
was used to extract the multi-temporal satellite imageries 
for object-based land cover classification.

Object-based land cover classification and change 
detection
Object-based classification effectively reduces misclas-
sification due to within-class variations and minimizes 
the “salt and pepper” effect (Phiri and Morgenroth 2017). 
Landsat and Sentinel-2 imageries were analyzed with 
OBIA in eCognition Developer software (Trimble Inc.). 
The OBIA involves image segmentation, followed by the 
selection of training samples and classification. Multi-
resolution segmentation was used in this study. The seg-
mentation outcome depends on three main factors: (i) 

Fig. 2  Main rivers in the Kota Belud district
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the homogeneity criterion or scale parameter that deter-
mines the maximum allowed heterogeneity for the result-
ing segments; (ii) the weight of color and shape criteria in 
the segmentation process (shape); and (iii) the weight of 
the compactness and smoothness criteria (compactness) 
(Aguilar et al. 2016).

Large-scale parameter values result in delineating 
big objects with high spectral variations. First, we visu-
ally inspected the segmentation results of different scale 
parameters to determine the suitable scale parameter 
value. Next, we conducted testing of different combina-
tions of shapes and compactness weights between 0 and 
1. Increasing the shape parameter value lowers the influ-
ence of the color parameter in segmentation. The image 
objects will be more compact by increasing the com-
pactness parameter value. We iteratively determined the 
combination of scale, shape, and compactness param-
eters by visual assessment (Table  1). Level 1 segmenta-
tion distinguished vegetation and non-vegetation covers 
and produced larger objects, while Level 2 generated 
finer objects for classification (Fig.  3). Training samples 

were selected for each land cover class to train the near-
est neighbor classifier in the eCognition software. Object 
features used by the classifier to classify the image 
objects included the mean reflectance value of the spec-
tral bands, the Normalized Difference Vegetation Index 
(NDVI), and the Normalized Difference Water Index 
(NDWI). We classified the satellite imageries into four 
land cover classes: Vegetation, Barren Land, River water 
and River Bar (Fig. 4).

Accuracy assessment compares the classified land cov-
ers to the actual land covers. We collected 200 reference 
points in the field and interpreted orthophotos acquired 
using a UAS to assess land cover classification accuracy. 
Google Earth high-resolution imageries were also used to 
check for any changes at these point locations. We com-
puted the user, producer, and overall accuracies based on 
the error matrix. Besides, Cohen’s kappa (k) coefficient of 
the agreement was calculated. It may range from − 1 to 
1, with 1 indicating perfect agreement between the pre-
dicted and actual land cover classes and vice versa.

The riparian area (50  m from the river) was derived 
using buffer analysis in ArcGIS software. The riparian 
zone of the Kadamaian River was the largest among the 
five, consisting of 1,358  ha or 58.74% of the total ripar-
ian area (2,312  ha). It was followed by the Wariu River 
(428 ha or 18.51%), Penataran River (264 ha or 11.42%), 
Kilambun River (177  ha or 7.66%) and Tohubang River 
(85  ha or 3.68%). These riparian polygons were used to 
extract the land cover classifications for analyzing the 
changes. Land cover classification pairs of consecutive 

Table 1  The optimal scale and parameters during image 
segmentation
Parameters Level 1 Segmentation Level 2 Segmentation

Landsat 8 Sentinel-2 Landsat 8 Sentinel-2
Scale 1.0 2.0 0.3 0.6
Shape/ Color 0.0001/ 0.9999 0.0001/ 0.9999
Compactness/ 
Smoothness

0.4/ 0.6 0.4/ 0.6

Fig. 3  Segmentation of Landsat 8 imageries (a, b) and Sentinel-2 imagery (c, d)
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years were cross-tabulated to investigate land cover 
changes from 2014 to 2015 (immediate impact) and 2015 
to 2020 (five-year impact).

Results
Land cover classifications and accuracies
Figure  5 shows the land cover classifications extracted 
using the riparian polygons. The error matrices of the 

land cover classifications are compiled in Table 2. 2014, 
2015, and 2020 land cover classifications achieved an 
overall accuracy of 90%, 92%, and 89%, respectively. The 
2014 and 2015 land cover classifications had a Cohen’s 
kappa accuracy higher than 0.90, but the 2020 land cover 
classification was slightly lower at 0.89. Every land cover 
class in each classified image achieved at least 85% in the 
user’s accuracy and the producer’s accuracy. Land cover 

Fig. 5  Landsat 8 false-color composites of 2014 and 2015 (a, b); Sentinel-2A false-color composite of 2020 (c). Object-based land cover classifications of 
a section of riparian area for 2014, 2015 and 2020 (d–f)

 

Fig. 4  (a) Unmanned Aerial System (UAS) Orthophoto of Penataran River after the earthquake, (b) Red box shows the barren land and vegetation classes, 
and (c) Cyan box shows river water and river bar classes
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classification pairs of consecutive years were cross-tabu-
lated to investigate land cover changes from 2014 to 2015 
(immediate impact) and 2015 to 2020 (five-year impact).

Land cover changes in the riparian zones
Figure 6 shows land cover changes in the riparian zones 
of the five rivers for the immediate impacts and the five-
year impacts. The earthquake in riparian areas was dev-
astating for the immediate impacts, as shown by a drastic 
increase in the river bar area, especially for the Penataran 
and Kadamaian Rivers. The increase of river bars at the 
Penataran River riparian zone was the highest among the 
five rivers, from 0 ha to 54.36 ha, whereas the Kadamaian 
River had an increase of 56.97 ha, from 35.82 ha (2014) 
to 92.79  ha (2015). The river bar areas only increased 
slightly in the other three rivers, at 1.08  ha, 1.44  ha, 
and 2.43  ha for the Wariu River, Tohubang River, and 
Kilambun River, respectively. The river with the highest 
increase in water area during the one-year change period 
is the Kilambun River (30.33 ha), followed by the Penata-
ran River (19.26 ha) and the Kadamaian River (6.03 ha). 
Figure 6 also showed that both the Wariu and Tohubang 
rivers had a decrease in water area of 5.85 ha (3.6%) and 

4.23  ha (13.28%), respectively. In addition, the barren 
land in the Kadamaian River showed the most significant 
decline of 25.35% (33.3 ha), followed by the Wariu River 
(9.51% or 22.5 ha). Meanwhile, in the 2014–2015 change 
period, Penataran River showed the slightest decrease in 
barren land of 3.06  ha, while having the highest loss in 
vegetation area of 69.21 ha, followed by Kilambun River 
(39.24  ha), Kadamaian River (29.43  ha) and Tohubang 
River (5.58 ha).

For the five-year impact, all rivers showed a decrease 
in river water area. Kilambun River showed the highest 
decrease in the river water class area by losing 26.05%, 
from 64.26 ha (2015) to 47.52 ha (2020). It was followed 
by the Penataran River (-22%), the Wariu River (-21.93%), 
the Kadamaian River (-18.77%), and lastly, the Tohubang 
River (-15.64%). For barren land, the Kilambun River 
and Penataran River increased by 3.06 ha and 10.44 ha, 
respectively. Vegetation area increased in all riparian 
areas, with the highest increase in the Kadamaian ripar-
ian area (108.18 ha), followed by Wariu (32.31 ha), Pena-
taran (26.19  ha), Kilambun (12.42  ha), and Tohubang 
(11.52  ha) riparian areas. During these five years, rock, 
gravel, and sand deposition at the Penataran river bars 

Table 2  Error matrix of land cover classification on Landsat 8 OLI/ TIRS (a) Year 2014 (b) Year 2015 and (c) Sentinel-2A image Year 2020
(a) 2014

Land Cover Vegetation Barren land River water River Bar Total User’s accuracy
Classification Vegetation 44 5 1 50 88.00

Barren land 3 46 1 50 92.00
River water 1 49 50 98.00
River bar 1 3 46 50 92.00
Total 47 53 53 47 200
Producer’s accuracy (%) 93.62 86.79 92.45 97.87
Total accuracy (%) 92.50
Kappa accuracy 0.90

(b) 2015
Land Cover Vegetation Barren land River water River Bar Total User’s accuracy

Classifica-tion Vegetation 49 1 50 98.00
Barren land 2 44 3 1 50 88.00
River water 2 48 50 96.00
River bar 2 1 47 50 94.00
Total 51 49 52 48 200
Producer’s accuracy (%) 96.08 89.80 92.31 97.92
Total accuracy (%) 94.00
Kappa accuracy 0.92

(c) 2020
Land Cover Vegetation Barren land River water River Bar Total User’s accuracy

Classifica-tion Vegetation 45 4 1 50 90.00
Barren land 47 3 50 94.00
River water 3 47 50 94.00
River bar 1 4 45 50 90.00
Total 46 54 55 45 200
Producer’s accuracy (%) 97.83 87.04 85.45 100
Total accuracy (%) 92.00
Kappa accuracy 0.89
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decreased by 38.74%, from 54.36  ha (2015) to 33.3  ha 
(2020). Kadamaian River’s bar area expanded another 
19.71  ha to 112.23  ha in 2020. We focused on river bar 
changes in the Kadamaian and Penataran rivers, the two 
most affected rivers, for further land cover transition 
analysis.

Figure  7; Table  3 show the land cover transition from 
other land cover classes to river bars for the immediate 
impact period (2014–2015) and from river bars to other 
classes in the five-year post-earthquake period (2015–
2020) for the Kadamaian River. 14.4  ha of the 35.82  ha 
of the bar area in 2014 remained unchanged. So, only 
78.39 ha of the river bar area in 2015 was newly formed. 
These new river bars were vegetation, barren land, and 
river water before the earthquake. The transition of 
barren land into bars was the highest, with an area of 
28.89 ha, followed by river water class (27.18 ha) and veg-
etation (22.32 ha). Five years after the earthquake, most 
of the river bars in 2015 had changed to other land cover 
types; 20.25 ha became barren land, 21.96 ha had transi-
tioned to river water, and 25.65 ha were covered by veg-
etation. Only about 26.87% of the river bars (24.93 ha) of 
the Kadamaian River remained unchanged.

For the Penataran River (see Fig. 8), 54.36  ha of land 
was replaced by river bars in the immediate impact 
period, and only 16.2 ha of bars remained unchanged in 
the five-year post-earthquake period. For the immediate 

impact, vegetation was the largest area transitioning to 
river bars (22.05 ha), followed by barren land (21.60 ha) 
and river water (10.71  ha). In 2020, there were 33.9  ha 
of river bars, which consisted of 16.20 ha from 2015 and 
newly formed river bars of 17.7 ha Table 4.

Discussion
Multi-temporal remote sensing data is instrumental 
in mapping and analyzing post-earthquake land cover 
changes (Aydöner and Maktav 2009; Balamurugan and 
Aravind 2015; Fichera et al. 2012; Gong et al. 2012; Iwa-
saki et al. 2020; Jelének et al. 2018). However, analyzing 
land cover changes using multitemporal optical satellite 
imageries in the tropics is challenging due to the cloud 
cover problem. We used many satellite imageries from 
the same year to fill in the masked-out areas of cloud 
and the induced shadows, but some parts of the moun-
tain areas were still affected by the problem. Neverthe-
less, our study only dealt with the riparian area impacted 
by the 2015 Ranau earthquake. We classified Landsat 
and Sentinel-2 imageries before and after the earthquake 
using OBIA because of its superior performance over the 
conventional pixel-based classification approach (Phua 
and Tsuyuki 2021; Ye et al. 2018). Image segmentation 
is typically a trial-and-error process of testing different 
shape, compactness, and scale parameter values (Clark 
et al. 2022). Generally, the values of these parameters 

Fig. 6  Land cover changes in the riparian zones
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vary across imaging sensors, resolution, and application 
(Blaschke 2010). The segmentation parameters’ values 
of the 2015 Landsat 8 imagery were usable for the 2016 
imagery but were not applicable to the Sentinel imagery. 

The parameter’s transferability is greatly affected by the 
sensor’s radiometric resolution (Cánovas-García and 
Alonso-Sarría 2015) and spatial resolution (Clark et al. 
2022); lower-resolution satellite imageries tend to have 

Fig. 8  Land cover transition of river bars in the Penataran River during one-year and five-year change periods

 

Fig. 7  Land cover transition of river bars in the Kadamaian River during one-year and five-year change periods
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higher segmentation scales. However, the classification 
accuracy of the Sentinel imagery in this study was only 
slightly different compared to the Landsat imageries.

There were more than 120 aftershocks with a magni-
tude above two during the three months after the main-
shock on June 5, 2015 (Tongkul 2016). The aftershocks 
are confined to a narrow zone, and the aftershocks’ depth 
gradually increases up to 30 km in the northwest direc-
tion. These earthquake-induced shocks cause massive 
landslides, especially in hillsides, mountain areas, and 
riverbanks within a water catchment (Xue et al. 2013). 
Removal of natural vegetation cover during mass move-
ment is one of the critical factors that could significantly 
impact the geomorphology and hydrological function-
ing of a water catchment. Direct runoff increases when 
impermeable surfaces replace vegetation. It also leads to 
increased soil erosion and sediment transport that accu-
mulate at the base of steep hillslopes, thus increasing the 
likelihood of debris flow occurring in due time (Simon et 
al. 2015). Among the five rivers, it was reported that the 
earthquake most impacted the Penataran River. It was 
noted that several hundred hectares of vegetation dis-
appeared along with soil and rocks due to the landslides 
(Tongkul 2016). Our land cover change analyses revealed 
that vegetation decreased in the riparian areas of all 

rivers, except for the Wariu River, during the immedi-
ate impact period. The vegetation cover of the Penataran 
riparian area decreased the most among the five rivers. 
Deforestation in the Penataran riparian area was 1.76 and 
2.35 times higher than in the Kilambun and Kadamaian 
rivers, respectively. Generally, earthquake-induced land-
slides trigger severe erosion in the hills and mountains, 
leading to soil degradation. As expected, soil erosion and 
landslides increased in years following the earthquake 
due to the absence of vegetation that affords rainfall 
interception and soil-binding processes. This high ero-
sion rate may accelerate topsoil loss and further prevent 
revegetation (Roslee et al. 2018), thus entering a positive 
feedback mechanism until equilibrium is achieved. How-
ever, increased vegetation cover was observed predomi-
nantly in Kadamaian and Panataran riparian areas in the 
five-year impact period. The vegetation cover increase in 
the Kadamaian riparian area was 4.13 times that of the 
Penataran riparian area.

Besides erosion, deposition is a critical factor affect-
ing the accumulation of sediment layers in river channels 
over time. These disturbances have a clear correlation 
with debris flow in a water catchment. Debris flow occurs 
when soil and rock materials are loosened, and water is 
saturated. When this occurs in steep mountainous areas, 
gravity can mobilize soil and rocks rapidly downhill 
(Edgar et al. 2018). Deposition in river channels down-
stream occurs when streamflow slows down, causing sed-
iment and debris to accumulate along the rivers as river 
bars (Roslee and Norhisham 2018). These sediments can 
vary in composition, ranging from fine-grained materials 
such as sand and silt to larger rocks and boulders (Roslee 
and Sharir 2019).

The object-based classifications captured the formation 
of river bars in the study area. Based on the land cover 
time series, single “forced bars” were the primary bar 
type observed in the study area. Point bars, which form 
inside a river bend, and central bars, which form in more 
comprehensive sections, are examples of forced bars. 
As a mixture of loose materials forms the river bars, the 
river channels in the study area have been experiencing 
changes over time. Through object-based image analy-
sis, we found that the changes in river bars in the Kada-
maian and Penataran rivers were the highest among the 
five rivers. The river bar areas increased on both rivers 
in the one-year change period. The river bar increased 
more than 2.5 times to 92.79  ha in 2015 for the Kada-
maian River. The Penataran River had no river bar before 
the earthquake, but new river bar areas of 54.36 ha were 
formed a year later. The river bar area in the Kadamaian 
River further increased to 112.23 ha in 2020. In contrast, 
the Penataran River experienced a decrease in river bar 
area to 33.3 ha in the five-year change period.

Table 3  Land cover transition of river bars in the Kadamaian 
River during one-year and five-year change periods
One-year changes Five-year changes
From To Area 

(ha)
From To Area 

(ha)
Vegetation River 

bars
22.32 River bars Vegetation 25.65

Barren land 28.89 Barren land 20.25
River water 27.18 River water 21.96

River bars 24.93
TOTAL 78.39 ha TOTAL 92.79 ha

Vegetation River bars 7.47
Barren land 17.55
River water 62.28
TOTAL 87.30 ha

Table 4  Land cover transition of river bars in the Penataran River 
during one-year and five-year change periods
One-year changes Five-year changes
From To Area 

(ha)
From To Area 

(ha)
Vegetation River 

bars
22.05 River bars Vegetation 8.91

Barren land 21.60 Barren land 20.34
River water 10.71 River water 8.91

River bars 16.20
TOTAL 54.36 ha TOTAL 54.36 ha

Vegetation River bars 0.63
Barren land 2.07
River water 14.4
TOTAL 17.7 ha
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Although the riparian area of the Penataran River is five 
times smaller than that of the Kadamaian River, the river 
bar cover rate of the Penataran River after the earthquake 
is higher than that of the Kadamaian River. The river bar 
cover in the Panataran riparian area was 20.59%, com-
pared to only 6.83% for the Kadamaian riparian area in 
2015. In 2020, the river bar cover was 12.61% and 8.28% 
for Penataran and Kadamaian riparian areas, respec-
tively. Considering that the Penataran River is an order 
lower than the Kadamaian River, the governing influ-
ence of stream order associated with a steeper gradient 
and smaller catchment size could have overridden other 
factors such as land cover, soil, and lithology (Clarke and 
Walsh 2006; Grieve et al. 2018; Shaw and Cooper 2008). 
The sediments in the Panataran River are odd to be trans-
ported to the Kadamaian River since the upper parts of 
the catchment have steeper gradients, which facilitate 
debris movement by the effect of gravity (Nainar et al. 
2018; Pike and Scatena 2010).

Further analysis by breaking up the Kadamaian River 
into two sections: Kadamaian Upper (before the Penata-
ran confluence) and Kadamaian Lower (after the Penata-
ran confluence) revealed that the loss in river bar areas in 
the Penataran and Kadamaian Upper rivers corresponds 
to a gain in the Kadamaian Lower River. This may reflect 
the dynamic nature of these river systems and imply that 
bedload mobilization was still active up to five years post-
earthquake (2015–2020). Besides material mobilization 
within the channel, it is also possible that other deposi-
tion mechanisms, namely material mobilization from 
the catchment side slope to the river channel, may have 
contributed to the changes in the river bars (Chappell et 
al. 2004). This can only be ascertained with further geo-
chemical or geophysical investigation in the future (Sug-
umaran et al. 2023). At present, our aim is not to balance 
the sediment budget but to demonstrate the extent of 
bedload mobilization following an earthquake.

Based on the land cover changes in the immediate and 
five-year impact periods, it is evident that the earth-
quake most impacted the Penataran River and Kada-
maian River. The formation of river bars was one of the 
most important causes of river channel changes in the 
study area. Thus, detailed land cover transitions to and 
from river bars in the two most affected rivers were ana-
lyzed based on the land cover time series. The earthquake 
caused a significant increase in river bars in the Kada-
maian River. Of the 78.39  ha of new river bars in 2015, 
34.67% were river water areas before the earthquake. For 
the Panataran River, almost 20% of the newly deposited 
river bars (54.36  ha) were river water areas before the 
earthquake. The transition from river water to river bar 
continued to occur during the five-year change period. 
The new river bar areas that originated from river water 
areas between 2015 and 2020 were 71.12% and 81.36% for 

the Kadamaian River and Panataran River, respectively. 
These findings indicate the reduction of river channel 
area, thus altering water flow patterns in the earthquake-
affected rivers. The sediment accumulation in river bars 
also leads to raised riverbeds. This eventually causes a 
reduction in channel capacity and an alteration in water 
flow patterns, increasing the risk of flooding, especially 
during heavy rainfall (Bohorquez and del Moral-Erencia 
JD 2017; Mahmood et al. 2022).

The spatial resolution of the Landsat and Sentinel 
imageries might limit the impact of the earthquake 
derived from the multitemporal satellite imageries. For 
instance, river bars smaller than the pixel’s size are likely 
undetected. Moreover, river water areas may vary due 
to rainfall variations in different acquisition times of the 
imageries. The five-year change period included mild El 
Niño (2018–2019) and La Niña (mild, 2016–2018; mod-
erate, 2020) phases. Since bedload mobilisation and mass 
movements are directly proportionate to rainfall amount 
and intensity, the magnitude and frequency of change 
could be higher than that observed in this study in stron-
ger La Niña years, especially with the increased rainfall 
brought about by climate change. Overall, the findings 
from the object-based land cover change analyses have 
contributed significantly to better disaster management 
in Sabah. By mapping the post-earthquake land cover 
changes, this study provided essential data for assess-
ing the extent of the impacts and identifying the areas 
that required mitigation actions. Moreover, the insights 
gained in this study guide long-term planning and policy-
making for the conservation of resilient river systems 
after seismic disturbances.

Conclusion
Earthquakes cause devastating impacts on the river sys-
tems in a catchment. Based on the object-based classifi-
cation of multi-temporal satellite imageries, we assessed 
the 2015 Ranau earthquake-induced land cover changes 
in the riparian areas of the affected rivers. The five riv-
ers in the catchment were affected to varying degrees. 
The Panataran River and Kadamaian River were most 
affected regarding vegetation loss and river bar forma-
tion. Detailed land cover transitions to and from river 
bars revealed the significant loss of river water areas in 
these two most affected rivers in the immediate impact 
period. However, the responses of river systems of differ-
ent orders, sizes, and gradients were different in the five-
year impact period. The river bar area in the Panataran 
River, which is smaller and lower order, decreased over 
the five years. In contrast, the river bar in the Kadamaian 
River, the larger and higher-order river, continued to 
increase during the period. By tracking land cover transi-
tion over time, it is possible to identify channel alteration 
due to river bar formation and predict areas vulnerable 
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to flooding in the future. Further studies in post-earth-
quake vegetation recovery and improving the land cover 
mapping using high-resolution remote sensing imager-
ies, including UAS imageries, are recommended. Deep 
learning models with OBIA in the high-resolution land 
cover mapping should be investigated to enhance the 
land cover analysis for post-disaster impact assessment. 
The land cover change information can be used to design 
appropriate flood mitigation measures and plan adaptive 
land management for ecosystem restoration in Sabah and 
other earthquake-affected areas.
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