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Abstract 

Sustainable development in urban areas requires a wide variety of current and theme-based information 
for efficient management and planning. In addition, researching the spatial distribution of earthquake (EQ) 
clusters is an important step in reducing seismic risks and EQ losses through better assessment of seismic 
hazards, therefore it is desirable to acquire an uncontaminated database of seismic activity. Quarry blasts (QBs) 
conducted over the mapped area have tainted the seismicity inventory in the northwestern region of Egypt, which 
is the focus of this paper. Separating these QBs from the EQs is hence preferable for accurate seismicity and risk 
assessments. Consequently, we present a highly effective ML model for cleaning up the seismicity database, allowing 
for the accurate delineation of EQ clusters using data from a single seismic station, “AYT ”, which is part of the Egyptian 
National Seismic Network. The magnitudes ≤ 3 that are very uncertain as EQs or QBs and need a significant 
amount of time to analyze are the primary focus of the model. In order to find the best way to classify EQs and QBs, 
the method looks at a number of ML models before settling on the best one using eight features. The results show 
that the suggested method, which uses the quadratic discrimination analysis model for discriminating, successfully 
separates EQs and QBs with a 99.4% success rate.
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Introduction
Egypt is thought to be a region of low-to-moderate 
earthquakes (EQs), with activity dispersed among 
multiple source regions. The primary influence on 
seismic activity comes from the relative motions of the 
plates in Africa, Arabia, and Eurasia. Since the majority 
of the country’s residents and historical locations are 

centered in the Nile Valley and Delta, determined EQs 
in Egypt are a main source of loss of life and property 
destruction (Badawy 1999). The latest destructive EQs 
have been reclassified as great magnitude 6.1 and 7.2, 
respectively, as the Alexandria 1955 and Aqaba 1995 
EQs, from average magnitude 5.8 as the Aswan 1981 and 
Cairo 1992 EQs (Hussein et al. 2013).

The recent decades in Egypt have been characterized 
by increasing urbanization and the construction of 
specialized infrastructure. This development necessitates 
an enhanced awareness of the risks posed by natural 
phenomena, notably EQs. As part of Egypt’s strategy to 
expand its land use, several new urban centers are slated 
for establishment (Hegazy and Kaloop 2015).

The mapped region (Fig.  1) is noteworthy due to its 
high seismic activity and the ongoing urban expansion 
both northward and southward. Furthermore, the 
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area encompasses the epicenter of the infamous 
Cairo EQ on October 12, 1992, situated in Dahshour, 
approximately 35  kms south of Cairo. This seismic 
event caused considerable destruction in Cairo, Giza, 
and Fayoum cities (Arafa-Hamed et al. 2023; Moustafa 
and Takenaka 2009).

The mapped area under investigation, situated within 
the Western Desert of Egypt, is not only prone to natural 
seismic events but also faces additional threats from 
anthropogenic activities, particularly quarry blasts from 
nearby cement companies. These industrial operations, 
while essential for economic development, introduce 
a significant challenge in distinguishing between 
earthquake tremors and blast-induced vibrations. This 
distinction is crucial for the accurate assessment and 
mitigation of seismic hazards (Abdalzaher et al. 2022).

Given the region’s susceptibility to seismic activities, 
as evidenced by the notable Cairo earthquake of 1992, 
and the burgeoning urban expansion, understanding 
and differentiating these seismic sources becomes 
paramount. This study aims to provide a comprehensive 
analysis of the seismic events in the area, with a focus 
on discriminating between natural EQs and QBs. By 
doing so, it endeavors to enhance the region’s seismic 
hazard mitigation strategies, thereby contributing to 
the safety and sustainability of the ongoing and future 
urban developments (Elhadidy et  al. 2021; Abdalzaher 
and Elsayed 2019). Such efforts are vital in ensuring that 

the region’s economic growth does not compromise its 
resilience to seismic risks.

Egypt is experiencing an urbanization dilemma due to 
the country’s 2% yearly population growth, which is caus-
ing many of its cities to get increasingly crowded. The 
major cities and the majority of economic activity are 
located in northern Egypt, which is typically wealthier 
than the southern region. A completely new metropo-
lis called the recently developed administrative capital 
is being constructed in order to relieve traffic in Cairo. 
With a total area of 714 km2 , it is located 35 km east of 
Cairo in the middle of the Cairo-Suez road, the Cairo-
regional ring road, and the Cairo-Ain El-Sokhna road 
(Elmouelhi 2019).

The Egyptian National Seismological Network 
(ENSN) was created by the National Research 
Institute of Astronomy and Geophysics (NRIAG) 
in order to reduce the seismic hazard and obtain 
more information about Egypt’s seismic activity. The 
ENSN program began as a small-scale pilot project 
in the epicentral sector of Cairo EQ in 1997 and was 
eventually expanded to monitor the entire nation. As 
a result, there have been notable changes to Egypt’s 
seismic activity in the present era. Besides, according to 
our knowledge, the relationship between tectonic and 
geological parameters and the most recent reported 
seismic activity is presented in Abdalzaher et al. (2020), 
Moustafa et al. (2022). Additionally, Egypt is improving 

Fig. 1 Map depicting the location and recorded seismic activity in the northern part of Egypt (Hussein et al. 1996)
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its ports, roads, highways, subways, and residential 
properties across a large portion of the nation. As 
a result, there are more blasting and underground 
mining incidents reported, which causes environmental 
degradation to worsen with time (Yan et  al. 2020; 
Abdalzaher et al. 2022).

In order to accurately map an active fault, estimate 
stress values correctly, and accurately observe micro-EQ 
activity, it is required to differentiate between the 
different vibration types through the categorization 
of low-intensity explosion recordings as natural EQs 
(Moustafa et  al. 2021). According to this viewpoint, 
the initial and crucial stage in any subsequent seismic 
probability and alleviation studies is the recognition of 
QBs. Remarkably, there is a resemblance between the 
frequency components of tectonic EQs, landslide events, 
volcanic-tectonic EQs, and QBs (Moustafa et al. 2022).

Carefully examining waveform recordings can yield 
valuable insights into distinguishing different event 
types with a reasonable level of confidence (Kim et  al. 
1994). However, conducting a comprehensive analysis 
of data like this takes time and expertise, and cannot be 
immediate. Automated systems, including deep learning 
(DL) and machine learning (ML) techniques, may offer 
a useful substitute since they produce objective, precise 
findings quickly, enabling the processing of more 
data with less effort (Abdalzaher et  al. 2022; Puente-
Sotomayor et  al. 2021; Moustafa et  al. 2021; Mousavi 
and Beroza 2022; Abdalzaher et  al. 2023; Mfondoum 
et al. 2023; Krichen et al. 2023; Abdalzaher et al. 2023). 
For various monitoring purposes, these approaches can 
be advantageous since they enable the identification and 
differentiation of determined events relying on their 
signature at a single station (Chin et al. 2020; Nguyen and 
Bui 2019; Asim et al. 2020).

Because of this, the most recent research efforts 
(Renouard et al. 2021; Kim et al. 2020; Pu et al. 2020; Zhu 
et al. 2022; Dong et al. 2014) concentrate on developing 
an automated ML classification system that takes into 
account the challenge of separating small-magnitude EQs 
from QBs using the least amount of training data possible 
while also making it easier to discover highly variable 
event patterns. More specifically, a dataset collected 
in northwestern Egypt will be used to analyze the 
methodology. In the meantime, the features of the model 
that are obtained from seismogram records include the 
complexity (C), event power (P) and its logarithmic form 
(logP), maximum peak amplitude of S-wave As and its 
logarithmic form (logAs), maximum peak amplitude of 
P-wave Ap, ratio between the maximum peak amplitudes 
(As/Ap), and spectral amplitude ratio (Sr).

The main contributions of this paper are as follows:

• Eight features derived from data collected by a single-
component seismometer at a single seismic station 
are used by the model realizing an accuracy rate of 
99.4%.

• The proposed method evaluates multiple ML 
classifiers and identifies the most effective one for EQ 
and QB classification. This model can aid in early EQ 
detection and mitigation, thereby reducing EQ risk 
and accurately distinguishing tectonic events from 
non-tectonic ones.

• The effectiveness of the ML technique in separating 
tainted EQ data is demonstrated. The proposed 
approach’s performance is validated through 
comprehensive comparisons using various 
metrics, including accuracy, F1-score, Kappa, 
MCC, confusion matrix, ROC curves, training vs. 
validation, and Precision-Recall.

The following is the outline of the paper. The relevant 
research is detailed in Section  "Related work". The 
experimental setting of the data that was used is then 
thoroughly examined in Section  "Experiment setup". 
In Section  "Method and analysis", the suggested system 
model and the approaches used are subsequently 
examined and analyzed. Section "Performance evaluation 
metrics" describes the metrics used for evaluating 
ML models, and Section  "Results and discussions" 
displays the outcomes of these evaluations. In 
Section "Conclusion and future work", the paper is finally 
concluded with future perspectives.

Related work
The abrupt release of energy that causes ground vibration 
on Earth’s surface can be categorized as either natural 
or man-made, depending on the source. Numerous 
research has shown that distinguishing between natural 
and artificial seismic occurrences is a significant issue 
(Renouard et al. 2021; Kim et al. 2020; Pu et al. 2020; Zhu 
et al. 2022; Dong et al. 2014; Qi et al. 2020).

In the literature context, the SeisComP3 operational 
monitoring system has incorporated two classifiers. The 
first classifier eliminates false events from the identified 
events using a low short-term average/long-term average 
threshold. The second classifier then categorizes the 
remaining events as either EQs or QBs (Renouard et al. 
2021). Other research efforts have integrated the SVM 
with the heterodyne laser interferometer to enhance 
the detection of seismic wave and contribute to the 
EQs and QBs discrimination (Kim et  al. 2020). More 
investigations were conducted using ten common ML 
models to evaluate the performance of recognizing 
microseismic and QBs (Pu et al. 2020). Indeed, studying 
and discriminating the QBs is also beneficial for the 
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pipe-soil subject. Accordingly, ML has also been used to 
study the effect of QBs excavation and their interaction 
with urban soil-rock stratum (Zhu et al. 2022). It is worth 
meeting that precise discrimination can offer decision-
makers dependable methods for managing disasters by 
defining the geographic distribution of a likely epidemic 
and its effects on the populace (Hamdy et  al. 2022; 
Abdalzaher et al. 2021).

The efforts have been extended also to build an 
automatic classifying of seismic events using supervised 
learning (Malfante et al. 2018). The framework constructs 
a predictive model from labeled data through three steps: 
(i) signal preprocessing, (ii) feature space mapping, and 
(iii) automatic classifier training. The model achieves an 
accuracy of about 93.5%. ML has also proved beneficial 
in assessing the effectiveness of predicting and evaluating 
landslide susceptibility as presented in a case in Japan 
(Hokkaido Eastern Iburi earthquake, 2018), South Korea, 
and China (Nam and Wang 2019; Lee and Lee 2024; Zhou 
and Fang 2015). Moreover, the SVM has been employed 
to differentiate between earthquake-triggered landslides 
and rainfall-triggered, which is considered a more crucial 
step for landslide susceptibility mapping (Nam and Wang 
2020).

Previous work (Ghamry et  al. 2021; Zhu et  al. 
2024) suggested several methods relying on a purely 
mathematical basis to identify and distinguish blasting 
from seismicity records in order to discriminate reported 
seismic activities. These algorithms have been applied 
in a number of studies to remove reported QBs and 
clean up regional catalogs. By simulating QBs’ spectra, 
Allmann et  al. (2008) investigated the geographical 
discrimination of QBs and were able to anticipate 
spectral details indicative of QBs rather than EQs. Other 
research has examined the observed spectra of EQs 
and QBs and compared spectral slopes, spectral ratios, 
path-independent modulations, and time-independent 
modulations (Dong et  al. 2014). A variety of methods, 
including spectrograms, and spectral analysis as well 
as quadratic and linear discrimination functions, have 
been regularly employed by those researchers and 
others. Although they have looked at several frequency 
windows, their overall findings remain the same. 
However, the majority of the previously suggested 
techniques only use one feature, are regarded as linear 
discriminant techniques, and are unable to identify the 
high complexity, discontinuities, and non-linearities in 
the recorded waveforms.

Following this, a variety of credit scoring models 
have been created using modern technology and ML 
(Liu and Zhong 2020), including affinity propagation, 
logistic regression (LR), and linear discriminate analysis 
(LDA) (Dong et  al. 2016). But occasionally, the efficacy 

of conventional statistical analysis approaches is 
insufficient. Prediction accuracy is therefore impacted 
because some of the assumptions that happened in these 
models may not be verified. The advancements in ML 
have allowed for improved performance over statistical 
models. Examples of these include the support vector 
machine (SVM) (Lara-Cueva et  al. 2016; Chin et  al. 
2019) and Naïve Bayes (NB) (Dong et al. 2016) as well as 
random forest (RF) (Zhang et al. 2020).

While a lot of work has been done in the literature to 
distinguish between EQs and QBs, a dependable and 
flexible solution is still needed. As far as we are aware, 
no prior scheme has been put forth that achieves 99.4% 
classification accuracy between EQs and QBs while solely 
depending on the records of a single station.

Experiment setup
The discrimination technique is used in this study to 
determine whether EQs and QBs are written down in 
detail by the closest seismic station to the mining area 
in the studied region, the AYT . We utilized 100  km as 
the maximum epicentral distance from the AYT  station 
and events with local magnitudes ≤ 3 . The AYT  short-
period station is equipped with only one component 
seismometer, 1 dB gain at 1 Hz, a frequency range of 1 Hz 
to 10 Hz, and a sampling rate of 100 samples per second. 
It is necessary to configure the environment before we 
start any ML approach. Feature preparation is thought to 
be the primary responsibility of ML algorithms. To put 
it another way, it is the process of enhancing prediction 
performance by generating suitable characteristics from 
the employed features.

Waveform data collection
Several tectonic events and QBs have been recorded at 
one of the Egyptian National Seismic Network (ENSN) 
seismic stations, named (AYT ) in the mapped area as 
depicted in Figure 1. A conventional short-time-average 
via the long-time-average trigger (STA/LTA) can detect 
seismic transients automatically if at least four stations 
record the occurrence. The signal is then manually 
categorized later on the basis of the seismogram 
waveforms’ visual aspect. The dataset utilized in this 
study is a part of the database provided by ENSN. More 
particularly, the data preprocessing is executed based on 
the calculations mentioned in the coming subsections.

The study area is characterized by a wadi plain that 
exhibits a subtle relief, with a gradient of approximately 
1% in the north–south direction. The topography of the 
region varies significantly; in the southwest, the elevation 
exceeds 70  ms, while the northern part of the site sees 
elevations below 40  ms. The geological composition 
of this area is a complex amalgamation of sedimentary 
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rocks, spanning a broad temporal range from the Eocene 
to the Quaternary periods (Hemdan 1992).

Previous geological and geophysical research in 
this region has revealed the presence of multiple fault 
systems, which have a pervasive impact across the entire 
area (EI-HADIDY 1995). These findings underscore the 
geological diversity and complexity of the region, which 
is crucial for understanding its seismic behavior and 
potential hazards.

Seismic activity in a given region is predominantly 
influenced by the geological structures present, including 
faults, trenches, subduction zones, and the region’s 
positioning within the tectonic plate. A notable example 
of this was observed on October 12, 1992, when a 
significant earthquake with a magnitude of 5.8 (Mb) 
struck southwest of Cairo, near the Dahshour region, as 
illustrated in Figure 1. This event occurred approximately 
25 km southwest of Cairo and was notably north of the 
proposed site for El-Fayoum New City, at a distance of 
about 56 km. The earthquake had a focal depth of 23 km, 
making it the largest instrumentally recorded earthquake 
in the Dahshour region to date.

The October 12, 1992, earthquake marked the 
first catastrophic seismic event in this area since the 
earthquake of 1847, occurring after a quiescent period 
of 145 years (Hussein et  al. 1996). The region has a 
rich history of seismic events, both in historical and 
contemporary times. Figure  1 delineates the recent 
seismic activity in and around the studied area from 
1997 to the present, as recorded by the ENSN. This data 
underscores the ongoing seismic relevance of the region 
and the necessity for continued monitoring and analysis.

In order to differentiate surface QBs from tectonic EQs 
impacting the studied region, a total of 870 occurrences 
from 1997 to 2013 were chosen. Because of the substan-
tial lateral heterogeneities in the crust (Nergizci et  al. 
2024), EQs in various regions show a surprising range of 
signal characteristics. Therefore, only seismograms, that 
took place near the AYT  seismic station, were taken into 
consideration. The chosen seismograms have the deepest 
possible focus of 42 km and are captured with moment 
magnitudes ≤ 3.0 measured by high-gain in addition to 
short-period seismometers. Figure  2 shows the spatial 
distribution of these incidents, the cement quarries, and 
the used AYT  station. The ENSN bulletins [53] contained 
the hypocentral parameters of the events that were gath-
ered, and a sampling rate of 100 Hz was employed. In 
order to determine the distance between the epicenters 
of EQs and volcanoes, the ENSN reports provide both 
the position of the AYT  seismic station and the epicent-
ers of earthquakes (EQs). The highest distance computed 
for collected EQs was 166 km, and for QBs, it was around 
114 km.

Table  1 provides basic descriptive statistics of the 
gathered waveform dataset’s spatiotemporal distribution. 
Besides, it provides descriptive statistics, which serve as 
the foundation for synthesizing the gathered waveform. 
It is worth mentioning that the table is separated into 
dispersion measures and measurements of central 
tendency. The first and third quartiles (Q1 and Q3) 
are used to evaluate variability, whereas the mean and 
median are used to measure the center trend.

Eliminating outliers from data shown in Figure 2 using 
quartiles is a robust statistical method that enhances 

Fig. 2 Spatial location of utilized EQs and QBs in the mapped area recorded at AYT  station
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the integrity and accuracy of the dataset. This process 
involves calculating the data’s first quartile (Q1), median, 
and third quartile (Q3), which partition the dataset into 
four equal parts. The interquartile range (IQR), defined 
as the difference between Q3 and Q1, measures statisti-
cal dispersion. To identify outliers, any data points lying 
below (Q1− 1.5× IQR) or above (Q3+ 1.5× IQR) are 
considered outliers. This method effectively highlights 
anomalies without being influenced by extreme values. 
Removing these outliers makes the dataset more repre-
sentative of the underlying population, leading to more 
reliable and valid analyses.

One‑hot encoding
A typical encoding used in ML techniques is one-hot 
encoding. This methodology modifies the event type’s 
category data, which is implemented using a sophisti-
cated algorithm. On the other hand, it allows us to collect 
the category data while retaining the essential infor-
mation. With this encoding method, every event type 
is given a unique binary characteristic, with each EQ 
event being assigned a value of 1 and all other QB events 
receiving a value of 0. A database including 870 events 
was created for the study region between October 16, 
1997, and November 21, 2013. 36.2069% (315 events) of 
the data are classified as EQs based on the obtained data, 
and the remaining 63.7931% are classified as QBs (555 
events). As a result, as shown in Table  1, a number of 
significant values (maximum, minimum, mean, median, 
standard deviation, etc.) have been computed for the 
used input features (As, Ap, As/Ap, P, Sr, and C), which 
are utilized to discriminate between the EQs and QBs. In 

the preliminary stage, manual labeling is utilized to facili-
tate the training procedure.

It is worth mentioning that, discriminating between 
EQs and QBs is crucial for accurate seismic monitoring. 
Ap and As help to distinguish these events, as EQs usually 
have a higher As to Ap ratio, while QBs often show a 
higher Ap amplitude. The parameter C differentiates 
the simpler waveforms of QBs from the more intricate 
waveforms of EQs. Sr reveals that EQs have a broader 
and more varied frequency spectrum, whereas QBs have 
concentrated spectral content with specific frequency 
peaks. P indicates the nature of energy release, with EQs 
exhibiting more sustained energy over time and QBs 
showing a quicker rise and fall. These features collectively 
enhance the ML model’s ability to accurately identify and 
classify seismic events.

Exploratory data analysis
Examining datasets is a key competency for a thorough 
knowledge of data. Consequently, regardless of the type 
of data, data analysis exploration is an important phase 
needed to complete algorithms. Additionally, it offers 
a thorough understanding of the goal and caliber of the 
task.

The plots of events (QBs and EQs) frequency ver-
sus period of existence are shown in Figure 3. This plot 
is used to look at the distributions of the two variables 
and evaluate the relationship between them. Besides, 
the magnitude frequency of the EQs and QBs ver-
sus the existence period influencing the mapped area 
is depicted in Figure  4. Significant restrictions on the 
EQ operation posing over a wide-ranging length, from 
micro-EQs to big ones, are expected to be supported by 

Table 1 Statistics of the employed features in the developed ML models

Metric QB/EQ Ap As As/Ap C Sr P log(P) logS

Mean QB 3786.824074 4597.37037 1.366985 3.845804 0.7974 6.144892 0.455352 3.519407

EQ 1645.46861 7670.410314 4.518848 5.638497 2.309079 1486.85241 2.622628 3.5278

Std QB 3085.000786 5190.224843 0.768135 1.443072 0.232093 8.219126 0.591598 0.318167

EQ 2217.279822 11187.41449 2.07131 3.332058 0.676536 3325.712483 0.602524 0.579983

Min QB 731 1080 0.402436 0.97463 0.3505 0.11717 −0.931183 3.033424

EQ 45 148 1.824065 1.6523 0.93038 88.750583 1.948171 2.170262

25% QB 1486.75 2034.25 0.793947 2.782075 0.642955 1.315614 0.119082 3.308186

EQ 311.25 1163.75 3.318707 3.28415 1.84645 139.260292 2.143827 3.065823

50% QB 2714 3037 1.16815 3.95825 0.77757 3.274657 0.515082 3.482323

EQ 774 3442.5 3.7937 4.4816 2.1257 259.315451 2.413801 3.536802

75% QB 5478.5 4593.75 1.66488 5.0143 0.950495 7.431209 0.87078 3.662167

EQ 2117 8972.5 4.883396 7.253375 2.78795 779.473887 2.89167 3.952911

Max QB 13837 29785 4.456908 5.992 1.5483 53.928891 1.731821 4.473998

EQ 14386 77561 14.940639 22.8162 3.9983 25330.31375 4.403641 4.889643
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Fig. 3 Histogram of the observed EQs and QBs by AYT  station with their frequency

Fig. 4 Histogram of the observed EQs and QBs by AYT  station with their magnitude frequency
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the comprehensive analysis of the seismic activity of the 
delineated area at multiple spatiotemporal levels.

Discrimination attributes extraction
In this case, characteristics taken from a collection of 
seismograms are used to automatically classify the data. 
Furthermore, one of the finest ways to improve the 
discriminating model and raise the learning algorithm’s 
predictive capacity is the creation of new features from the 
raw data. Using gathered waveform records, we assume 
three different seismic source discrimination features in 
this step.

Seismic waves amplitudes
The amplitude of the P- and S-waves in the waveform 
analysis is represented by their maximum values, which 
are indicated by the symbols (Ap and As), respectively. 
Indeed, the vertical velocity component of the EQs and 
QBs seismograms determines the values of Ap and As. The 
source data are adjusted for linear trend and instrument 
reaction for every seismogram. It is possible to see 
differences in waveform features between the tectonic 
and human activities. Natural event waveforms are full of 
high-frequency signals. While the anthropogenic events 
show emergent Sg signals and are relatively low in high-
frequency energy, they have an impulsive Sg signal with a 
rapid amplitude drop-off. Using the frequency-dependent 
Q-model (Moustafa et  al. 2023; Morozov 2010), we 
accounted for geometrical dispersion and perceptual 
attenuation when we adjusted the computed amplitude 
values.

Two additional features were computed from Ap and 
As to improve discrimination. The maximum S-wave 
amplitude’s logarithm is the first feature, and the maximum 
S-wave maximum to maximum P-wave amplitude ratio 
is the second. These amplitude properties have been 
demonstrated in numerous studies to be useful markers for 
distinguishing between EQs and QBs at distances of 50 to 
200 km (Dong et al. 2016; Kim et al. 2020). EQs frequently 
show that As ≥ Ap . As with QBs, they demonstrate that 
Ap ≥ As.

Complexity
The parameter of complexity (C) can be declared as the 
ratio of merged powers of the velocity seismogram s2(t) 
in the chosen windows length ( t0 represents the P-wave 
onset time; t1 and t2 represent the first and second window 
lengths). One possible representation of the parameter C is 
Horasan et al. (2009).

(1)C =

∫ t2
t1

s2(t)dt
∫ t1
t0

s2(t)dt

It is observed that the ideal C values for EQs and QBs 
with equal magnitudes were determined empirically by 
determining the limits of the integrals (t0, t1, and t2). 
given example, given the windows of t0 = 0s , t1 = 2s , 
and t2 = 4s , the C results of the employed events (QBs 
and EQS) reveal 0.59 and 11, respectively. For t0 = 0s , 
t1 = 2s , and t2 = 4s , the C results of QBs grow as the 
chosen window length increases ( C = 0.59 ; C = 0.62 
for t0 = 0s , t1 = 2s , and t2 = 5s ). Consequently, the 
computed C values serve as the basis for choosing 
the greatest window for differentiating between EQs 
and QBs. Table  1 provides an overview of the signal 
properties used in the process of discrimination.

Spectral ratio
This parameter called Sr was employed. The FFT is used 
to calculate the Sr, a potential criterion of classification 
between the shallow EQs and the QBs. To put it more 
specifically, Allmann et al. (2008) may represent Sr.

where fh1 represents a band of high frequency ranges 
between fh1 and fh2 , while the band of low frequency 
ranges between fl1 and fl2 is the low-frequency band, 
and a stands for the seismogram integrated ratio of Sr.

The bounds of Sr integrals are chosen via high power 
and lower power in the spectra of the employed events. 
Indeed, the low and high frequencies are 1.10 Hz and 
10.20 Hz, respectively. According to our observations and 
other research (Allmann et al. 2008), QBs have a limited 
band and EQs have a wide band. As a result, we choose 
to employ the spectrum’s maximum frequency values as 
a variation parameter. One of the primary characteristics 
used for QB discrimination is the event power (P). This 
parameter is dependent on the amplitude schemes 
and spectral qualities (Kekoval et al. 2012). It takes into 
account As/Ap, C, and Sr in more detail. As so, P can be 
written as.

Finding information in a dataset with high discriminative 
power as features is known as feature engineering 
(Domingos 2012). Such information would be a set of 
traits that might distinguish between two classes of data 
points in a binary classification task. Coping, removing 
the features with high association, and separating the 
class from the remaining data is the first step. Then, for 
our ML estimators to operate with certain distinguished 

(2)Sr =

∫ fh2
fh1

a df
∫ fl2
fl1

a df

(3)P = (As/Ap)2 × C × Sr2.
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results in the proposed categorical variables, we need to 
cast them into a numerical format.

According to recent studies on seismogram 
interpretation and EQ data analysis (Kulhánek 2012; 
Abdalzaher 2024a; Abdalzaher et  al. 2024b), local EQ 
catalogs involve events recorded at epicentral distances 
closer to 150  km by a network of stations with station 
spacing of tens of kilometers. The initial seismic waves to 
reach the recording station at these short distances are 
represented as Pg and Sg. In the crust’s granitic layer, they 
stand in for shear or compressional waves.

Method and analysis
This section suggests a classification scheme that divides 
EQs from QBs based on ML algorithms. The suggested 
method uses very little training data and describes how to 
recognize extremely varied event patterns. The suggested 
method is then demonstrated by depending on such 
models.

Developed ML model and benchmarks
Quadratic discriminant analysis (QDA)
The development of QDA aims to address the limitations 
of LR in various domains, including parameter estimation. 
If we have a sample with a small size and the distribution of 
the predictors is normal. QDA is a better fit than the linear 
discrimination analysis model when the data deviates solely 
in terms of being more or less than the linear assumption 
(James et al. 2013)..

Support vector machine (SVM)
To determine the ideal hyperplane for K-features, the SVM 
is employed. The features are mitigated to produce the 
best hyperplane in a K-dimensional space. The hyperplane 
is reached if the data marks are deviated by the greatest 
possible distance. SVMs are used to affect the behavior 
of the hyperplane and to show the data points that are 
closest to it. Additionally, a linear support vector machine 
that delivers values between “-1” and “1” to an output 
linear function resembling LR is another improvement 
made to the SVM. It is important to note that the SVM 
uses a regularization parameter of an objective function 
to balance the loss and boundary maximization. The goal 
of this procedure is to maximize the hyperplane’s border 
between data points (Chang and Lin 2008).

Naive bayes (NB)
In general, the NB classifier is nonlinear. In contrast, if the 
probability factors depend on exponential relations, the NB 
classifier is handled as a linear classifier. For continuous-
value features, the NB Gaussian technique is employed 
(Perez et al. 2006; Abdalzaher et al. 2021). As a result, it is 
regarded as a Gaussian NB (GNB), a probabilistic method 

that uses likelihood to forecast values in a deterministic 
manner. The following formula is used to compute the 
probability:

where d represents continuous input data, C signifies 
the class, σ denotes the variance, F corresponds to the 
probability density, and µ stands for the mean.

K‑nearest neighbors (KNN)
This model relies on a boundary to ascertain an input 
value for each set of its closest neighbors during the deci-
sion-making process (Tan 2006; Abdalzaher et al. 2023). 
The distance parameter, which is used to choose the 
nearby neighbors, and the neighbors’ set, which is used 
to regress the input, are the hyper-parameters of this 
technique. The lowest KNN is expected for one neighbor 
since the approach can become overly dependent on out-
liers. According to their cosine similarity to their input, 
KNN models can also assess the trainset votes (Abdalza-
her et al. 2021).

(4)p(d = F |C) =
1

√

2πσ 2
× e

−
(F−µ)2

2σ2

Features 
prepara�on

Catalog 
gathering

Split the data into 
train-to-test with ra�os 

80%:20%,  70%:30%, 60%:40%, 50%:50% 

Apply the data to:
• QDA (Developed) 
• SVM
• NB
• KNN

Evaluate the examined 
models 

(Benchmarks) 

Fig. 5 Proposed ML System Model for EQs and QBs Discrimination
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Proposed system model
Figure  5 illustrates the proposed method, which 
combines the QDA, SVM, NB, and KNN ML techniques. 
We performed a thorough analysis using these ML 
models. First, we have extracted the features employed 
in the suggested supervised method. Eight characteristics 
(As,  log(As),  Ap,  As/Ap,  P,  log(P),  Sr, and C) are first 
calculated. This is where the process of maximizing the 
quantity of features used to categorize EQs and QBs 
starts. Large-scale experiments are then created with 
these models. Moreover, the number of events (EQs and 
QBs) utilized in our study is 870. To ensure the model’s 
performance stability and accurate discrimination 
between EQs and QBs, we examined the model based on 
four training dataset ratios (50% to 50%, 60% to 40%, 70% 
to 30%, and 80% to 20%). Once more, the four split ratios 
are considered to employ the utilized ML models until 
the last evaluation step, where the best model with the 
best performance is considered. The evaluation measures 
utilized in the suggested approach are provided in detail 
in the section that follows.

Performance evaluation metrics
Improvements in computational power and data storage 
capacity enable far more thorough analysis than were 
before possible, leading to a better knowledge of the ways 
in which QB and EQs differ from one another. Hence, 
we use a number of criteria to evaluate the classifiers’ 
performance as follows.

Accuracy
It is worth noting that the accuracy gives us the product 
of the number of targets properly guessed and the target 
number, which is represented by.

where yj is our classifier’s output, γ shows the indicator 
function, S indicates the number of samples, and ŷj is 
the estimated target.In addition, we tested the classifiers 
ten times over using the cross-validation function. It 
is important to note that if the accuracy score is 1, the 
predicted values exactly match the target values. The 
true positive (TP) in a two-class classification problem 
denotes the correct predictions ( > 0 ), whereas the false 
positive (FP) denotes the mistakenly classified samples 
as positive. True negatives (TN) and false negatives (FN) 
are the two categories of negative findings. Thus, the 
precision can be written as follows:

(5)Accuracy =

∑S
j=1 γ (ŷj = yj)

S

(6)Accuracy =
TP + TN

S

MCC
Matthews (1975) introduced the MCC, a popular 
index in ML for binary classification. It could evaluate 
simultaneously the accuracy of the classification of 
explosions and micro-seismic events. A coefficient 
called MCC is used to compare predicted and observed 
binary classifications. The value range of MCC is [-1, 1]. 
“0” indicates that no further prediction beats a random 
prediction, “-1” shows complete falseness between 
observation and estimation, and “1” indicates absolute 
prediction accuracy. The MCC can be written as

F1‑score
A popular statistic to show the degree of ML model 
accuracy dependent on the input dataset is the F1 score. 
In specific, it uses a binary categorization technique 
that divides the choice into “positive” and “negative” 
categories. It combines the model’s harmonic mean recall 
and precision. It is provided by:

Cohen Kappa score (Kappa)
The accuracy that would have resulted from using 
random estimates is taken into account by the Kappa 
score. The ideal accuracy score is obtained if Kappa = 1 
(McHugh 2012). It is provided by:

Confusion matrix
To find and show the category where a classifier fails the 
most, confusion matrices are used. A confusion matrix 
is generated by categorizing the test cases according to 
their expected and ground truth labels. According to 
the standard, the confusion matrix for an N-class model 
is an N × N matrix where the true class is indexed in the 
row dimension and the predicted class is indexed in the 
column dimension. Finally, the rates of true and false 
positives (TPR and FPR) are given by

(7)
MCC =

TP · TN − FP · FN
√
(TP + FP) · (TP + FN ) · (TN + FP) · (TN + FN )

(8)F1 =
TP

TP +
1
2 (FP + FN )

(9)
κ =

2× (TP · TN − FP · FN )

(TP + FP) · (TP + FN ) · (TN + FP) · (TN + FN )

(10)TPR =
TP

TP + FN
,
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Results and discussions
Initially, we did not eliminate any aspect that we deemed 
to be irrelevant during our training. Furthermore, we 
have normalized the features due to significant disparities 
in the ranges of our continuous features. Data imputation 
was unnecessary as our dataset is devoid of any missing 
data. The data frame is partitioned into two distinct 
datasets: the training dataset and the test dataset. The 
training dataset comprises 50%, 50%, 60%, 70%, or 80% 
of the main data, whereas the test dataset consists of the 
remaining ratios of 40%, 30%, or 20% of the main data, 
respectively. Subsequently, during the training phase, we 
fine-tune the hyperparameters. Next, we compute the 
error rate for each ratio using all the ML classification 
models that were investigated.

To be more specific, the suggested analytical 
framework relies on three main components: feature 
calculation, development of an ML system, and 
evaluation models against the top-performing categories. 
Considering the magnitudes of the recorded EQs/QBs 
presented in Table 1, it is anticipated that aftershocks will 
occur. It is important to note that the aftershocks may 

(11)FPR =
FP

FP + TN
.

occur after the mainshock, ranging from weeks to years. 
Additionally, the quantity of aftershocks is contingent 
upon the magnitude of the mainshock.

In the proposed approach, we have utilized four ML 
classification models. The classification system used 
focuses on two distinct classes: class “0” for EQs and 
class “1” for QBs. We have created Python code that 
depends on the Scikit-Learn module. In addition, the 
configuration settings of the top-performing model that 
result in the optimal performance.

Here, we present the findings acquired from the 
proposed criterion. Put simply, we present the key 
findings that lead to the most effective methodology 
for accurately classifying EQs and QBs. In order 
to facilitate the comparison of the remaining top 
characteristics selected from the initial optimization 
step, we have incorporated F1-score, MCC, accuracy, 
as well as Kappa score into Fig.  6. The optimal model 
is obtained using the “QDA” algorithm, which is 
compared against the SVM, NB, and KNN models. 
Specifically, this model attains optimal performance 
with 99.4% accuracy and 98.2% F1 score, as well as 
97.8% Kappa and MCC. Furthermore, while employing 
the “SVM” model, its results yield an accuracy of 93.4%, 
an F1-Score of 75.6%, a Kappa score of 72.0%, and an 
MCC score of 75.0%. When using the NB model, it 

Fig. 6 Scores of the accuracy metrics of the developed ML models for EQs and QBs discrimination



Page 12 of 17Abdalzaher et al. Geoenvironmental Disasters           (2024) 11:23 

gives an accuracy of 99%, an F1-Score of 97.1%, and a 
Kappa and MCC scores of 96.6%. Regarding the KNN 
model, its accuracy is 98.0%, its F1-Score is 92.3% with 
a Kappa score of 90.9% as well as 91.3% for the MCC 
score.

Figure  7 illustrates the comparison of elapsed time 
among the four presented models. The “QDA”, “SVM” and 
the “NB” models have almost the same elapsed time of 
0.271, 0.27, and 0.271 s, respectively. Whereas, the KNN 
shows a slightly longer elapsed time of 0.3  s. However, 

Fig. 7 Comparison of the Elapsed time of the developed ML models for EQs and QBs discrimination

Fig. 8 Scores of the feature importance of the best-developed ML model (QDA) for EQs and QBs discrimination
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these models do not exhibit the optimal classification 
performance. Clearly, the most accurate classification 
model is the QDA, which has a decent elapsed time.

Figure  8 presents the mean importance of various 
features used in a model. The feature P stands out as the 
most significant, having the highest mean importance. 
Following P, the features As/Ap and Sr are also notably 
important, though their contributions are considerably 
less than P. The features log(P) and logS show moderate 
importance, while Ap and As have relatively low 
importance. The feature C is the least influential, with 
the lowest mean importance value among all the features 
evaluated.

In order to demonstrate the efficacy of our QDA best 
model, we show its learning curves in Fig. 9 for both the 
training and cross-validation. The figure states that the 
QDA model achieves the highest level of performance 
with 100% accuracy in training and about 99% in cross-
validation. To be more specific, the no fluctuating curve 
means no more improvements can be achieved. Further-
more, the training and cross-validation curves exhibit a 
strong resemblance, indicating the model’s efficacy.

The ROC curve represents the relationship between 
the true positive rate (TP) and the false positive rate (FP) 
of the projected class. Based on our extensive analysis, 
the QDA model consistently outperforms the others in 
terms of classification accuracy. Figure  10 displays the 
ROC curves obtained by classifying EQs and QBs using 

the superior model QDA model. The classification of EQ 
class “0” and QB class “1” shows success rates of 99% and 
96%, respectively.

The confusion matrix is a primary methodology 
employed in assessing a classification problem, providing 
an indication of the performance of the projected classes. 
Once again, after conducting a thorough investigation, 
we have found that the QDA model obtains the highest 
level of classification accuracy in distinguishing between 
the two events’ types (EQs and QBs), as demonstrated 
in Fig. 11. The results indicate that all employed datasets 
accurately predict the labels of EQ “0” with a 100% 
accuracy rate. Whereas, the label prediction of QB “1” 
has an accuracy rate of 96.4%.

Figure  12 displays the relationship between the 
precision and recall for the most accurate approach in 
terms of the accuracy of classification. Specifically, we 
exclusively present the precision-recall outcome based 
on the QDA (best model) after exhaustive efforts made 
with the other accessible ML models. To clarify, the QDA 
model is able to accurately distinguish between the two 
event types (EQs and QBs) with a precision rate of 100%.

Conclusion and future work
Distinguishing between small-magnitude EQs and QBs 
is a crucial difficulty in resolving catalogs that have been 
affected by contamination. This differentiation plays a 
vital role in evaluating seismic risks, especially in relation 

Fig. 9 Learning curves of the best-developed ML model (QDA) for EQs and QBs discrimination
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Fig. 10 ROC curves of the best-developed ML model (QDA) for EQs and QBs discrimination

Fig. 11 Confusion matrix of the best-developed ML model (QDA) for EQs and QBs discrimination



Page 15 of 17Abdalzaher et al. Geoenvironmental Disasters           (2024) 11:23  

to hazards. The paper employed the QDA ML classifier 
to differentiate between EQs and QBs, as compared to 
the SVM, NB, and KNN classifiers. Through extensive 
experimentation, we have determined that the QDA 
classifier is the optimal model for achieving accurate 
categorization between two classes: EQs and QBs. 
The QDA model achieved a promising classification 
accuracy of 99.4% in differentiating between the two 
classes. This analysis was conducted using a dataset 
consisting of 870 seismic events (EQs and QBs) that were 
monitored exclusively by a single seismic station within 
the designated study area. Therefore, we recommend 
that the stakeholders employ the proposed technique to 
precisely identify EQ clusters, particularly when working 
with seismicity catalogs that may be influenced by 
contamination. This methodology is also applicable for 
conducting comprehensive hazard assessments.

Our future work aims to refine the model by incor-
porating instances where natural transients display 
emergent onsets, which can further complicate the clas-
sification task. Additionally, we plan to extend the data-
set by including seismic events from multiple stations 
to validate the model’s performance across different 
geological settings and network configurations. We also 
intend to explore advanced feature extraction techniques 
and incorporate additional discriminative features that 
could improve the classifier’s accuracy and generalization 
capability. Furthermore, integrating real-time processing 

capabilities and optimizing the model for lower latency 
could make it more suitable for operational use in seismic 
monitoring networks.
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