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Abstract
Background  Rock slope instability is a complex geotechnical issue that is affected by site-specific rock properties, 
geological structures, groundwater, and earthquake load conditions. Numerous studies acknowledge these aleatory 
uncertainties in slope stability assessment; however, understanding the rock behaviour could still be improved. 
Therefore, this paper aims to summarise the probability methods applied in rock slope stability analysis in mining and 
civil engineering and develop new probabilistic design and assessment methodologies for four methods, namely 
empirical/rock mass classifications techniques, kinematic analysis, limit equilibrium (LE), and numerical methods and 
introduces how to integrate all methods to determine the total probability of failure. The case studies have been 
conducted based on slopes from Indonesia, a seismically active country, utilising the proposed design methods.

Results  Regarding the probabilistic empirical/rock mass classification (RMC) technique, this study has identified that 
seven of the ten most involved input parameters in RMC naturally exhibit aleatory uncertainty. Thus, the optimal way 
to present the output probability of RMC is as a confidence interval (CI) or total and conditional probability associated 
with each rock mass class. In probabilistic kinematic analysis, this study presents a systematic method to compute the 
probabilities of different types of failure alongside the total probability of occurrence (PtK). The probability of failure 
(PoF) for jointed generalized Hoek-Brown (GHB) numerical modelling was lower than that obtained through the 
probabilistic LE approach for a similar slope. However, the PoF of jointed GHB is higher than the LE approach when 
loaded with 0.1 and 0.15 earthquake coefficients.

Conclusions  The variation of PoF across different failure criteria determines how epistemic uncertainty is apparent 
in the modelling process, while the aleatory uncertainty arises from input parameters. Furthermore, this study 
introduces the total probability of failure equation as a combination of kinematic and kinetic probabilities (limit 
equilibrium and numerical modelling).
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Introduction
Maintaining rock slope stability is the primary objec-
tive of any open cut/pit slopes. However, achieving a 
completely stable slope may be challenging due to the 
inherent nature of the heterogeneous properties of rock 
mass (Abdulai and Sharifzadeh 2019, 2021; Aladejare 
and Akeju 2020; Asem and Gardoni 2021; Basahel and 
Mitri 2019; Huang et al. 2023; Obregon and Mitri 2019; 
Rusydy et al. 2022). The variability of rock properties 
leads to uncertainty in determining the input values for 
rock slope stability analyses, directly impacting its out-
put and safe slope design. The variability is defined as 
the multiple values of the quantity of the rock properties 
at different points and times (Begg et al. 2014; Hsu and 
Nelson 2006; Zhang Wg et al. 2021). Other researchers 
define variability as the total unpredictability value of the 
system or parameters (Bedi 2013). The variability can be 
quantified by the frequency distribution of the collected 
data, whilst the probability distribution quantifies the 
uncertainty leading by variability (Bedi 2013; Begg et al. 
2014). Thus, the probability analysis can help address the 
uncertainties in rock slope stability analysis.

Numerous studies recently acknowledged the aleatory 
and epistemic uncertainties in their analysis of rock slope 
stability analysis. The aleatory uncertainty arises due 
to geological processes which are inherent in rock. The 
epistemic uncertainty is mostly due to a lack of knowl-
edge, input data or measurement error (Abdulai and 
Sharifzadeh 2019; Baecher and Christian 2005; Lu et al. 
2019).Both uncertainties often occur in rock slope stabil-
ity analysis. how to overcome those uncertainties for four 

rock slope stability methods are unwell explain inform 
of exhaustive designs flowchart in previous studies. Fur-
thermore, Budetta (2020); Obregon and Mitri (2019) 
emphasised that combining rock slope stability methods 
will yield reliable results. This review comprehensively 
explains the methodology to integrate all methods in the 
probability approach.

This study aims to review the probability methods 
applied in rock slope stability analysis and develop a new 
design and assessment flowchart for probability analysis 
employing empirical/rock mass classifications, kinematic 
analysis, limit equilibrium (LE), and numerical methods. 
Furthermore, this paper provides case studies using the 
proposed flowcharts to analyse the probability of rock 
slope failures using those four methods. Lastly, this study 
introduces the total probability of failure by integrating 
all probability results.

Rock slope in civil and mining engineering projects
Numerous civil engineering and mining projects focus 
on rock mass and cutting rock slope. Both civil and min-
ing projects have specific performance criteria regarding 
slope design, reliability, and stability approaches. Sev-
eral distinct performance requirements between the two 
projects are related to the degree of reliability, degree of 
normal stress, degree of asperities or joint roughness, 
degree of stand-up time for long-term stability, degree of 
geology structures involvement, and the factor of safety 
(FoS). Figure  1 illustrates the differences between civil 
and mining engineering projects in a spider chart.

Fig. 1  Difference between road-cutting rock slopes and open-pit mining rock slopes
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Civil engineering projects have a high demand for reli-
ability and safety compared to the rock slope for open-pit 
mining (Wyllie 2018; Wyllie and Mah 2004). For instance, 
the slope height in open-pit mining is higher, and the 
slope is designed for 5 to 50 years of operation. In civil 
engineering projects (e.g., road-cutting rock slopes), the 
height of slopes is relatively low, but it is common to 
design them to last over 100 years (Basahel and Mitri 
2019). In mining projects, slope usually can be accom-
modated, provided that failure is not a “surprise”. On the 
other hand, the slopes in civil engineering should not 
fail due to the risk to the public. In both projects, several 
combinations of slope angles are chosen based on the 
rock mass quality and geological structure orientation.

Furthermore, the road-cutting rock slopes are designed 
in a high-reliability state. A small failure on the slope will 
lead to transportation interruption, risk to the public, 
and an economic impact. Hence, the FoS of rock slopes 
in civil engineering projects is significantly higher than 
in open-pit mining slopes. Basahel and Mitri (2019) state 
that the FoS in civil engineering projects is approximately 
1.5. In addition, the design of the road-cutting rock slope 
in civil engineering projects focuses more on the geologi-
cal structure than the stresses acting on the slope due to 
the shallow depths (Keneti et al. 2021; Wyllie 2018; Wyl-
lie and Mah 2004). In shallow slopes, where the normal 
stress is the low or de-stressed area, the geological struc-
tures tend to influence rock slope stability more than 
most critical factors. Thus, Barton (2013) and Li et al. 
(2020) note that it is unlikely for intact rock to fracture 
at a low normal stress environment where the dilation 
stress is dominant in shear behaviour. In large open pits, 
the normal/gravitational stress controls the stability of 
the slope (Stead and Wolter 2015).

In high normal-stress slopes, a small scale of roughness 
no longer affects the shear strength of the rock slope and 
can be neglected. Nevertheless, according to Barton and 
Bandis (1982), the large scale of undulation in the discon-
tinuity plane still plays a significant role under relatively 
high normal stress conditions. In addition, open-pit min-
ing still considers the geological structures to assess the 
slope stability. The other four categories, such as degree 
reliability, probability of failure (PoF), degree of asperi-
ties, and long-term stability, are less concerned in min-
ing projects. This phenomenon occurs due to short-term 
mining operations. Neither civil nor mining projects can-
not neglect the geological structure uncertainty which 
is inherent in rock (aleatory uncertainty) when studying 
rock slope stability. Geological structures play an impor-
tant role in nature and engineered rock slopes, determin-
ing the failure typologies, mechanism, failure initiation, 
and style (Stead and Wolter 2015). The failure typologies 
are driven by the orientation of geological structures or 
discontinuity planes (Barton 1973; Rusydy et al. 2019, 

2021, 2022). While the failure mechanism is influenced 
by the composition and geometry of rock slope (Stead 
and Wolter 2015). Furthermore, the discontinuity planes 
decrease the strength and stiffness of rock mass (Zhao et 
al. 2023).

Assessment methods for rock slope stability
The rock slope stability methods are divided into four 
main approaches: empirical, kinematical, limit equilib-
rium, and numerical modelling. In rock engineering, 
empirical and kinematic analyses are employed in rock 
slope design without incorporating the FoS. While the 
limit equilibrium and numerical modelling can compute 
the FoS and assess the critical failure mechanism (Abdu-
lai and Sharifzadeh 2019; Hussain et al. 2021; Sari 2019). 
Sari (2019) emphasises that all those methods had to be 
conducted to reach reliable and satisfactory rock slope 
stability analysis and design. However, McQuillan et al. 
(2020) note that limit equilibrium modelling and kine-
matic analysis are the most routine methods applied 
in the coal mining industry, followed by empirical and 
numerical modelling, especially in Australia. This section 
will provide a systematic explanation of four rock slope 
stability assessments.

Empirical rock mass classification approaches
The empirical rock mass classifications provide the basic 
knowledge of empirical design in rock engineering. The 
rock mass classification system fosters communication 
between geologists, contractors, mining engineers, and 
civil engineers (Cai 2011; Rusydy and Al-Huda 2021; 
Zhang et al. 2019). The empirical and classification 
approaches in rock support design are the most practi-
cal, assuming that investigated rock masses are identical 
to the previous case studies (Cai 2011). To date, a mul-
titude of rock mass classifications have been developed 
in rock mechanics. The most widely employed methods 
are the rock mass rating (RMR89) of Bieniawski (1989), 
the Q-system developed by Barton et al. (1974), and the 
Geological Strength Index (GSI) introduced by Hoek and 
Brown (1997). For rock slope stability design, the engi-
neers employ Slope Mass Rating (SMR) from Romana 
(1985), which is a modified version of RMR89 by adding 
the adjustment factors (F1, F2, F3, and F4). In addition, 
many new classification techniques have been introduced 
in recent years.

The development of rock mass classifications for dif-
ferent applications from 1946 to the present is denoted 
in Fig. 2a. In the first era of development, most classifi-
cations were developed for tunnel design, followed by 
general purposes (tunnelling and cutting) that were initi-
ated in 1973 when Bieniawski initiated his first RMR73 
and updated to RMR89. The latest modifications of 
the RMR89 have been made by Celada et al. (2014) for 
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RMR14, Maazallahi and Majdi (2021) for DRMR, and 
Azarafza et al. (2022) for soft rock slope design. Further-
more, the classification for rock slope analysis was initi-
ated by Selby (1982), who developed rock mass strength 
(RMS). Recently, Bar and Barton (2017) proposed the 
Q-slope, a modification approach from the previous 
Q-system of Barton et al. (1974). McQuillan et al. (2018) 
developed the Slope Stability Assessment Methodology 
(SSAM) in a mining project, employing ten important 
parameters in rock slope stability analysis and design.

Regarding the important parameters critical in slope 
stability, Pantelidis (2009) recognises the top ten param-
eters employed in rock mass classifications for rock 
cut slopes. These parameters are intact rock strength, 
rock quality designation (RQD), spacing, joint condi-
tion, groundwater, slope height, slope angle, degree of 
weathering, method of excavation/cutting, and joint 
orientation. This review has computed the weight of 
each parameter based on 11 classification techniques 
from Pantelidis (2009).The three latest additional clas-
sifications are Q-slope (2017), SSAM (2018), and NSMR 
(2013) from our analysis as denoted in Fig.  2b. All 14 
classification techniques (N) are utilised to determine 
the weighting of each parameter, as shown in Fig. 2c. The 
scoring analysis indicates that the top five parameters 
significantly involved in slope analysis are spacing of dis-
continuity planes, joint condition and aperture, strength 
of intact rock, RQD, and groundwater. Those parameters 

are essential for slope stability analysis in empirical rock 
mass classification approaches.

Numerous researchers conducted probabilistic rock 
mass classification. Sari et al. (2010) performed a Monte 
Carlo Simulation (MCS) to determine the RMR and GSI 
classifications for 3 types of Ankara andesite. On the 
other hand, Cai (2011) employed MCS to determine the 
input variable for GSI, whilst Bedi (2013); Lu et al. (2019) 
employed MCS to analyse the input variable for Q-sys-
tem in tunnelling design.

Kinematic analysis approach
The rock slope kinematic approach can determine the 
typology of slope failure from geometry evaluation of 
dips (βj), dip directions (αj), slope angle (βs), slope direc-
tion/face/aspect (αs), and friction angle (Φ). Barton 
(1973) emphasised that the orientation of discontinu-
ity planes will determine the mode of failures in rock 
slopes. In the conventional deterministic approach, the 
single mean values of dip and dip directions from the 
stereography projection techniques are utilised to deter-
mine the type of failure, as shown in Fig. 3a. Basahel and 
Mitri (2019) emphasise that the discontinuity planes in 
rock mass are considered the source of uncertainty in the 
analysis.

Numerous researchers have conducted probabilis-
tic kinematic analyses in recent years. Park et al. (2016) 
conducted a probabilistic kinematic analysis using a GIS-
based approach. The probabilistic kinematic conducted 

Fig. 2  (a) The history of rock mass classifications timeline, (b) and (c) are the resumes of the involved parameters in slope classification systems. Some 
data are retrieved from Pantelidis (2009), Zheng et al. (2016), and literature studies
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by Park et al. (2016) was a stochastic approach generating 
20,000 random values of Monte Carlo simulation based 
on statistical properties of the input variables (βj, αj, βs, 
αs). On the other hand, Zhou et al. (2017) and Yan et al. 
(2022) employed the Bayesian approach in their probabil-
ity analyses.

The probabilistic analysis acts in two systems: a series 
and parallel system (Obregon and Mitri 2019; Park and 
West 2001; Zhao et al. 2016), and those systems are rea-
sonably reliable to be implemented in probabilistic kine-
matic analysis (Fig.  3b). In the series system, when one 
parameter fails, it will lead to the failure of the entire 
system, such as rock slope failure. On the other hand, 
in a parallel system, the rock slope failure will only 
occur when all parameters fail. Hence, all conditions are 
required for the slope to fail.

The kinematic analysis requires numerous geometri-
cal conditions for the slope to fail. For instance, the pla-
nar failure will occur in conditions where the dip of the 
discontinuity plane (βj) is higher than the friction angle 
(Φ) but lower than the slope angle (βs). Another condi-
tion is that the dip direction (αj) must be within 20o of the 
slope face (αs) (Wyllie 2018; Wyllie and Mah 2004). This 
planar failure condition is expressed in Eq. 1. The other 
requirements for wedge and toppling failures are defined 

in Eqs. 2 and 3, respectively, as Obregon and Mitri (2019) 
suggest for the parallel system.

	

PoP = Pr [φ ≤ βj ≤ βs] · Pr [αs − 20◦

≤ αj ≤ αs + 20◦]
� (1)

	

PoW = Pr [φ ≤ βi ≤ βs] · Pr [αs − 80◦

≤ αi ≤ αs + 80◦]
� (2)

	

PoT = Pr [(90◦ − βs) + φ ≤ βj] · Pr [(αs ± 180◦)
− 20◦ ≤ αj ≤ (αs + 180◦) + 20◦]

� (3)

Limit equilibrium approach
Rock slope stability relies on the shear strength (τ) of dis-
continuity planes and rock mass developing on the slip 
zone of the rock slope. In planar failure, the rock mate-
rial can be assumed to be Mohr-Coulomb (MC) material, 
in which the shear strength is expressed in cohesion (c) 
and friction angle (Φ) in a linear pattern (Wyllie and Mah 
2004). Barton (2013) emphasises that the shear strength 
of intact rock, non-planar rock joints, and rockfill are 
determined as non-linear shear strength patterns. The 
rock slope failure can occur either along the discontinuity 

Fig. 3  (a) The graphic and stereography projections for three types of rock failures (modified from Wyllie and Mah (2004), (b) the parallel systems for 
calculating the probability of occurrence refers to Rusydy et al. (2022) and Obregon and Mitri (2019)
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planes or along the weak zone in the rock mass. Hence, 
Wyllie and Mah (2004) classify rock shear strength 
into the shear strength of discontinuities and the shear 
strength of rock masses, as illustrated in Fig. 4a.

The shear strength of discontinuities is influenced by 
friction angle and irregularity of discontinuity planes, 
namely asperities (i), as defined by Patton (1966). These 
asperities influence the discontinuity shear strength, 
especially in low normal-stress rock slopes. According to 
Barton (1973), the asperities can be computed from sur-
face joint roughness coefficient (JRC), joint compressive 
strength (JCS), and effective normal stress (σ’). When dis-
continuity planes are filled with soft materials (curve 1 in 
Fig. 4a), the shear strength is commonly lower than the 
clean discontinuity plane (Pereira 1997). This condition 
occurs because the infilled material controls the shear 
strength, not the joints’ shear strength. When the dis-
continuity plane is filled with weak clay, cohesion is clay’s 
cohesion. In contrast, if the cohesion of the discontinuity 
planes is clean (see curves 2 and 3 in Fig. 4), the cohesion 
is zero (c = 0), but the friction angle depends on rough-
ness of the surface plane and ratio between normal stress 
and rock strength (Barton 2013; Wyllie and Mah 2004).

Regarding the shear strength of rock masses, the failure 
in rock masses is a combination of failure in sliding sur-
faces with the failure of intact rock between discontinuity 

planes. Thus, the shear strength of rock masses is defined 
as the shear strength of intact rock bridges combined 
with the shear strength on the discontinuity planes at 
larger strain (Barton 2013; Barton and Pandey 2011). 
The rock mass and intact rock act as isotropic behav-
iour. The shear strength can be calculated by employing 
either Mohr-Coulomb (MC) or Hoek-Brown (HB) fail-
ure criteria (Sari 2019), or Barton-Bandis (BB) criteria 
as suggested by Barton (2013). As shown in Fig. 4a, the 
rock mass failure occurs in heavily fractured rock masses 
and weak massive rock. Sari (2019) emphasises that the 
HB was primarily developed for homogeneous rock mass 
with a non-sliding failure plane. Furthermore, the shear 
strength behaviour determines the FoS of the rock slope. 
The FoS commonly used in mining projects is 1.2 to 1.4 
(Wyllie and Mah 2004); nevertheless, the FoS of rock 
slope in civil engineering projects is commonly 1.5 (Basa-
hel and Mitri 2019).

The FoS is the ratio of shear strength (resisting forces) 
to the shear stress (driving forces) acting on the slope. 
In the deterministic approach, the FoS is calculated by 
assigning a single value to each parameter and neglecting 
the variability of input parameters. To quantify this chal-
lenge, the PoF has been introduced in probabilistic limit 
equilibrium analysis for mining and civil engineering 
projects. The PoF is computed using a similar procedure 

Fig. 4  (a) The Five geological conditions and their relationship stresses (normal and shear) on Mohr diagram and rock shear strength classes after modi-
fied from Wyllie and Mah (2004), (b) cohesion (c) and friction angle (Φ) in different types of geological conditions
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to FoS, examining the shear strength (resisting forces) 
and the shear stress (driving forces) acting on the slope 
using the appropriate input parameter distribution and 
the stochastic modelling approach. In other words, the 
PoF defines the probability of FoS < 1.0 or reference val-
ues from the simulations (Abdulai and Sharifzadeh 2021; 
Aladejare and Akeju 2020; Obregon and Mitri 2019). 
The margin of safety determines the difference between 
resisting forces and driving forces. Hence, the negative 
value of the margin of safety demonstrates an unstable 
rock slope.

Numerical modelling approach
The numerical modelling method is an improvement 
from the limit equilibrium method, which is limited 
in calculating the FoS. The limit equilibrium method 
assumes the slope materials have rigid behaviour, and all 
the forces act in virtue of the centre of gravity. Numeri-
cal modelling such as finite element method (FEM), finite 
difference method (FDM), boundary element method 
(BEM), distinct element method (DEM), and hybrid 
methods are rigorous methods to understand the dis-
placement direction or deformation and stress analy-
sis in geomechanics (Zhang et al. 2012). The computer 
program of numerical modelling seeks to determine 
the initial condition of rock mass mechanical response 
from in situ stress, boundary conditions, etc. The rock 
slope materials are subdivided into small zones, each 
with specific rock material properties assigned. Those 
material models are assumed ideally to be a stress/strain 
relationship. When these zones are linked, it is named a 
continuum model, but when they are not connected and 

separated by discontinuity planes, it is referred to as a 
discontinuum model (Wyllie and Mah 2004).

A different approach to computing the FoS is applied 
in numerical modelling with a finite element program 
where the shear strength is reduced before the slope 
fails (Hammah et al. 2009; Shen 2012; Wyllie 2018). This 
technique is known as the Shear Strength Reduction 
Method (SRM). Zienkiewicz et al. (1975) introduced the 
SRM during the early period of finite element model-
ling when they studied the stability and deformation of 
embankment slopes by reducing shear strength proper-
ties. Recently, this method has been implemented by 
many other authors to determine the FoS in mining and 
civil engineering projects (Abdulai and Sharifzadeh 2019, 
2021; Basahel and Mitri 2019; Brideau et al. 2012; Ham-
mah et al. 2009; Hussain et al. 2021; Sari 2019; Shen 2012; 
Stead et al. 2006).

According to Wyllie (2018), the SRM approach has two 
primary improvements compared to the limit equilib-
rium method; the sliding plane and satisfy equilibrium 
for a different type of failure are determined automati-
cally. In addition, numerical modelling can model the 
continuum and discontinuum of rock mass behaviour 
unaccompanied by prior assumptions (Hammah et al. 
2009). The limit equilibrium method cannot fulfil all 
those advantages in numerical analysis. Numerical mod-
elling can also explicitly calculate the stress and dis-
placements of the rock mass, considering site-specific 
conditions. The example output of numerical modellings 
for rock slope stability analysis are illustrated in Fig. 5.

Numerical modelling is an advanced approach to rock 
slope stability analysis. Nevertheless, each method has 
its advantages, disadvantages, range of applicability, and 

Fig. 5  The example of numerical modelling using FEM for rock slope stability and its outputs
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output, as shown in Table 1. Considering all discontinu-
ity planes in numerical models is challenging, particularly 
for extensive isotropic or anisotropic rock slopes. When 
the numerical model uses the HB criteria, the GSI must 
be between 30 and 80, as the HB failure criterion is inap-
plicable for very hard rock/brittle response (GSI > 80) and 
soft rocks (GSI < 30) (Wyllie 2018).

Most numerical modelling in rock slope assessments 
employs the HB failure criterion rather than the MC fail-
ure criterion. Furthermore, Barton (2013) emphasised 
that the HB with a non-linear strength criterion is more 
reliable in rock shear analysis than MC having a linear 
strength pattern. Moreover, Hussain et al. (2021) com-
pared the FoS under both failure criteria; revealing that 
the MC method tends to yield higher values of FoS com-
pare to HB.  Barton (2013) noted that the failure in the 
rock mass is due to the failure in the rock intact bridge 
combined with the failure along a discontinuity plane. 
Different scales of rock mass yield distinct shear strength. 
Accordingly, scale-effect correction must be performed 
using Barton and Bandis (1982) law for jointed rock 
mass. Scale-effect is also related to the block size effect 
on jointed rock. According to Barton and Bandis (1982), 
shear strength and stiffness will eventually decrease as 
the block size increases due to a reduction of effective 
joint roughness.

As mentioned previously, numerical modelling encom-
passes various methods, including FEM, FDM, BEM, 
DEM, and hybrid methods. Each method has advantages 
and disadvantages. According to Zhang et al. (2012), 
FEM has limitations related to the mesh size effect; FDM 
struggles with regular grid systems when it includes frac-
ture integration and inhomogeneity of material. How-
ever, both FEM and FDM can deal with non-linearity 

material within the model. The BEM has limitations in 
simulating the inhomogeneous and non-linear materials. 
In contrast, DEM can work with inhomogeneous mate-
rial and incorporates the discontinuity planes into the 
model (Zhang et al. 2012). In summary, FEM, FDM, and 
BEM are typically utilised to simulate continuum mod-
els, while DEM is used for discontinuum models in rock 
slope stability analysis.

The probabilistic approaches in rock slope stability
The probabilistic approach is an advanced method com-
pared to the deterministic. A single mean value is uti-
lised in deterministic as an input parameter to produce 
a single output value (Abdulai and Sharifzadeh 2019, 
2021; Basahel and Mitri 2019; Obregon and Mitri 2019). 
The probabilistic approaches have been prevalent in the 
recent decade (Ahmadabadi and Poisel 2016). The follow-
ing paragraphs elaborate on three popular probabilistic 
slope stability approaches.

The Monte Carlo Simulation (MCS) is the most fre-
quently used method in stochastic analysis in generat-
ing random values of rock properties employing Simple 
Random Sampling (SRS) or Latin Hypercube Sampling 
(LHS). Hammah et al. (2009) note that MCS can generate 
multiple output responses in one model, which is quali-
fied to deal with multiple types of probability distribu-
tions and develop a model correlation between variables. 
In multiple variables, Millard (2013) emphasises that 
if all variables have an identical data distribution, it can 
directly generate the correlated random number. How-
ever, if each variable has its distribution, it must employ 
rank correlations.

The second method is the Point Estimate Method 
(PEM), introduced by Rosenblueth (1981) to develop a 

Table 1  The comparison between the slope stability assessment methods
Aspects Numerical Modelling Limit Equilibrium method Rock Kinematic Analysis Empirical and Classifica-

tion Method
Advantages - Displacement direction or slope 

deformation.
- Yields the FoS.
- Does not require a failure plane.
- Non-rigid material behaviour.

- Yields the FoS.
- Able to calculate manually.

- Able to calculate manually.
- Yields the type of failure.

- Provide basic knowledge 
of rock quality.
- Able to calculate manually.
- Rock mass quality in quan-
titative approach

Disadvantages - Require high-performance com-
puter for large-scale model

- Require failure plane.
- Rigid material behaviour.
- Forces acting at the centre 
of gravity.

- Ignore the force working 
the slope.
- Unable to determine Factor 
of Safety FoS.

- Unable to determine Fac-
tor of Safety FoS.

Applicable 
Range as Regard 
Geological 
Conditions (Refer 
to Fig. 4)

- Infilled fracture
- Smooth and clean fracture
- Rough and clean fracture
- Fractured and strong rock
- Weak intact rock

- Infilled fracture
- Smooth and clean fracture
- Rough and clean fracture
- Fractured and strong rock

- Smooth and clean fracture
- Rough and clean fracture

- Infilled fracture
- Smooth and clean fracture
- Rough and clean fracture
- Fractured and strong rock

Deterministic 
Output

Slope Deformation, stress, and FoS FoS Type of Failure Quantitative value and rock 
mass classes

Probabilistic 
Output

PoF and Reliability Index (RI) The PoF and Reliability Index 
(RI)

The total probability of oc-
currence (PtK)

The conditional probability 
of each class
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straightforward method to estimate statistical moments 
such as the standard deviation, mean, and skewness. A 
comprehensive study regarding PEM for probabilistic 
analysis in rock slope was conducted by Ahmadabadi 
and Poisel (2016), dealing with non-normal data distri-
bution typology employing four types of PEMs: Rosen-
blueth’s PEM, Zhou and Nowak’s PEM, Harr’s PEM, and 
Hong’s PEM. The result of the PEM approach is reliable 
and accurate in numerous conditions regardless of its 
simplicity compared to MCS, requiring a high number 
of simulations. This compassion has been conducted by 
Hammah et al. (2009) and Park et al. (2012).

The third method is Bayesian statistics. Different from 
frequentist statistics treating the observed data as ran-
dom variables while its statistical parameters (e.g., mean, 
standard deviation) are a single unknown value, the 
Bayesian statistic considers both observed data and sta-
tistical parameters as random variables (Contreras et al. 

2018; Feng et al. 2020). The Bayesian approach starts by 
determining the likelihood function before deciding the 
parameter of the prior distribution to compute the poste-
rior distribution (Feng et al. 2020).

As for rock engineering study, the Bayesian approach 
has been adopted by numerous researchers to quantify 
the uncertainty in rock strength, stresses, and other rock 
properties for intact rock and rock mass (Aladejare and 
Wang 2018; Asem and Gardoni 2021; Contreras et al. 
2018; Feng et al. 2020; Rosenbaum et al. 1997). Recently, 
Contreras et al. (2018) utilised the Bayesian regression to 
analyse the intact rock strength (σci) and material con-
stant of intact rock (mi) for the Hoek-Brown strength 
criterion and compared it with the frequentist approach. 
Several differences between the frequentist and Bayes-
ian approaches from Contreras et al. (2018) are com-
bined with other literature reviews, as summarised in 
Table  2. The prior distribution adopted in the analysis 

Table 2  Frequentist versus bayesian statistic in rock engineering
No. Condition and Aspect Frequentist Bayesian
1. Observed data As random values As random values
2. Observed data properties (e.g., µ, σ) As fixed value As random values
3. Prior data distributions Not considered Considered
4. Terminology of 95% boundaries Confidence intervals (CI): uncertainty in the 

interval
Credible intervals (CI): uncertainty in the parameter.
High-density interval (HDI)

5. Interpretation Rely on sample information Rely on prior and sample information
6. Probability as the degree of belief Considered Considered
7. Result interpretations Maximum likelihood, CI, and null hypothesis Updating knowledge (posterior) based on prior 

and sample information.

Fig. 6  The proposed flowchart for probabilistic analysis of rock mass classifications (RMCs)
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by Contreras Contreras et al. (2018) is the maximum 
entropy principle, which allows the researcher to select 
the best plausible distributions. In a more advanced 
approach, Huang et al. (2023) employed the deep learn-
ing method, especially long short-term memory (LSTM), 
which yielded more reliable results in slope stability pre-
dictions compared to support vector machine (SVM), 
random forest (RF), and convolutional neural network 
(CNN).

Proposed flowcharts and case studies
The proposed flowcharts
Probabilistic empirical rock mass classifications (RMC)
As mentioned above, numerous researchers have 
explored rock slope stability using probability and 
advanced statistics. Accordingly, this research aims to 
develop a comprehensive design flowchart for conduct-
ing the probabilistic empirical rock mass classification. 
As the quantitative and empirical approaches, the output 
of RMCs is rock mass quality values, the steepest slope 
angle, rock mass friction angle, rock mass cohesion, and 
other rock mass strength characteristics for rock slope 
designs. As illustrated in Fig. 2b, seven out of ten param-
eters naturally yield variability values (aleatory uncertain-
ties). In contrast, the slope angle, height, and excavation 
methods rely on engineers and can be considered a sin-
gle value. These facts concluded that most of the input 
parameters in RMCs vary, leading to uncertainty in the 
outputs.

The probability analysis for RMCs must consider the 
typology of input data (discrete or continuous) of the 
multiparameter data. Figure 6 shows the proposed flow-
chart to analyse the popular RMCs using the probabilistic 
approach. This study merely focuses on RMR (Bieniawski 
1989), SMR (Romana 1985), NSRM (Singh et al. 2013), 
SSAM (McQuillan et al. 2018), Q-system (Barton et al. 
1974), Q-slope (Bar and Barton 2017), and GSI (Hoek 
and Brown 1997) rock mass classification techniques.

The final RMC probability output is the total and con-
ditional probability for different rock mass classes or/
and confidence interval (CI). Furthermore, Walpole et al. 
(2011) state that conditional probability determines the 
probability of a distinct group or classification range. In 
comparison, the CI describes the probability of the out-
put falling between those values.

Probabilistic kinematic analysis
Obregon and Mitri (2019) and Rusydy et al. (2022) con-
sider the discontinuity planes to have a variability value 
while the slope dimension is a fixed value. Another prob-
abilistic kinematic approach was performed by Budetta 
(2020), computing the kinematic failure probability by 
dividing the number of potentially unstable planes by 
the total number of planes. However, this approach did 

not consider the variability of slope angles, slope direc-
tions, and friction angles. This study proposes four steps 
in computing the probability of occurrence (PtK) in the 
kinematic analysis, as shown in Fig. 7.

Steps 1 and 2 are related to data processing and analy-
sis to define the type of data distribution of observed 
data and prior information if the Bayesian approach is 
included in the probability analysis. Step 2 employs the 
stereography projection to determine the potential type 
of failure in a deterministic approach. At this step, the 
probability density function (PDF) of observed data and 
goodness of fit analysis is developed to define the statistic 
parameters and type of data distributions. In step 3, the 
probability analysis is performed by applying the kine-
matic conditions of each type of failure as the boundary 
values to determine the probability from the PDF. Step 4 
starts to compute the total probability of occurrence (PtK) 
value in series connection dealing with all probability of 
failures utilising Eq.  4. The Pi is the probability of each 
potential failure in the kinematic approach (PoP, PoT, or 
PoW).

	
PtK = 1 −

∏N

i=i
(1 − Pi)� (4)

The probabilistic kinematic analysis must comprehen-
sively consider any type of failure. This study provides the 
methodology to calculate the total of probabilistic kine-
matics from possible failures. This study employs a series 
system with a union relationship expressed as P [p1 U 
p2 … U pN] as Savely (1987) suggested. This approach is 
performed since more than one type of failure could be 
acted on one slope. Equation 4 is utilised to calculate the 
composite probability (PtK) where Pi will be PoP, PoW, and 
PoT, as suggested by Obregon and Mitri (2019) and Savely 
(1987). The probability of occurrences for each PoP, PoW, 
and PoT follows the multiplication rule or product rule, 
where the probability only occurs when all kinematic 
conditions are met.

Probabilistic limit equilibrium (LE) and numerical modelling
According to Abdulai and Sharifzadeh (2021), the PoF is 
often merged with the reliability index (RI) or the coef-
ficient of reliability (CR) analysis to quantify the rock 
slope stability. Shen (2012) states that RI is the probability 
of the slope in stable circumstances with certain design 
conditions. Identical to PoF, the RI is influenced by the 
variability of input values in the modelling; hence, the 
probability analysis of input values must be addressed as 
a priority.

The methodology to analyse the rock slope stability 
and design is shown in Fig. 8. Determining the typology 
of shear strength and geological conditions of the inves-
tigated rock mass is the first step of the analysis. The 
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geological conditions will determine the type of shear 
strength employed in rock slope analysis.

The c and Φ are derived from the rock mass classifica-
tion empirical approach known as cm and Φm in the rock 
mass shear strength. The Hoek-Brown strength criterion 
is the most popular method in determining the rock mass 
shear strength parameters. Besides discontinuity and 
rock mass shear strength parameters, other input data 
considered in the analysis are stress, unit weight, slope 
geometry, joint orientation, groundwater fluctuations, 
external load (earthquake), and rock stratigraphy on the 
slope. Before probability analysis is performed, the first 
step is to scrutinise the type of data and basic statistical 
parameters of input data. In addition, the type of failure 
must also be recognised in kinematic analysis for the 
limit equilibrium method, yet the type of failure may not 
be required in numerical modelling.

In rock slope stability modelling, the complexity of 
geological structures or joints must be considered, even 
if it is greatly difficult to determine the accurate distri-
bution of those structures. Singh et al. (2021) suggest 

employing laser scanning techniques to identify struc-
tural discontinuity automatically or utilising the photo-
grammetry techniques as Chen et al. (2016) conducted. 
Furthermore, the rock slope probability analysis needs 
to consider the stochastic dynamic effect of earthquake 
(Huang and Xiong 2017; Huang et al. 2022a, b) and 
groundwater fluctuation following the rainfall duration 
and intensity(Hussin et al. 2024; Yang et al. 2023). The 
earthquake model approach, as conducted in our previ-
ous research (Rusydy et al. 2017, 2018a, b, 2020b) can be 
employed in generating the earthquake model from the 
nearest fault system.

The external load, like earthquakes, exhibits variabil-
ity in strength, frequency, and duration, even for earth-
quakes recorded in the same location (Huang and Xiong 
2017; Huang et al. 2022b). Hence, adopting a probability-
based approach to quantify the variability of earthquake 
parameters will produce a reliable estimate of slope sta-
bility under seismic load (Hu et al. 2022). Furthermore, 
the slope stochastic dynamic method is robust, consid-
ering non-linear stochastic seismic dynamic of slope 

Fig. 7  The proposed flowchart to compute the total of probability kinematics (PtK) from three type failures referring to the parallel and series connection 
system
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compared to pseudo-static and Newmark sliding block 
approaches (Huang et al. 2022b).

Case studies using the proposed methodology flowchart
Geological setting of a case study slope
The proposed flowcharts in Figs. 6 and 7, and Fig. 8 are 
applied to one of the stable slopes in Aceh province, 
Indonesia. All the data are extracted from Rusydy et al. 
(2020a). The investigated slope is 10 km from the Great 
Sumatra Fault (GSF), as illustrated in Fig.  9. The slope 
is formed by argillaceous limestone, a part of the Woyla 
group formed during the Jurassic to early Cretaceous 
(Adhari and Hidayat 2023; Barber 2000; Barber and Crow 
2005; Wajzer et al. 1991). According to Rusydy et al. 
(2019), the limestone of the Woyla group is highly frac-
tured, bedded, disturbed-folded, and blocky due to tec-
tonic forces from the subduction zone and GSF. At this 
rock slope, four rock slope stability methods are applied 
and discussed in the following sections.

Implementing the flowcharts

a.	 Probabilistic Kinematic Analysis

The dip and dip directions of joints, slope orientation, 
and friction angle shown in Fig. 10a were extracted from 
Rusydy et al. (2020a) and replot using Dips software 
from Rocscience. Two possible failures can occur: planar 

failure from joint set 1 (J1) and wedge failure due to the 
intersection plane between J1 and joint set J2. However, 
Rusydy et al. (2020a) conducted the kinematic analy-
sis with a deterministic approach. As stated in step 2 
in Fig.  7, the goodness-of-fit test must be performed to 
determine the type of data distribution of observed dip 
angles and dip directions for both J1 and J2, as denoted 
in Fig. 10bc. The goodness-of-fit test analysis utilises the 
fitdistrplus R programming package developed by Del-
ignette-Muller and Dutang (2015). The test shows that 
the log-normal distribution is fit for dip angles of both 
joint sets and normal distribution for dip direction. The 
log-normal and normal distributions for observed dip 
angles and dip direction data identify the statistic param-
eters employed in the Monte Carlo simulation.

The PDF of 10,000 simulated random values and the 
boundary value (e.g. Φ, βs) determine the probability 
of each condition, as shown in Fig.  11. After perform-
ing the Monte Carlo simulation, the probability for each 
condition is determined using the PDF and their cor-
responding boundary values. As for planar failure, the 
probability of the first condition, i.e., Φ < βj < βs, is 0.707 
(70.7%), as shown in Fig.  11a. It means that 7070 from 
10,000 simulated dips (βj) fall between the friction angle 
(Φ) and the slope angle (βs). In other words, the probabil-
ity of meeting the first condition for planar failure, where 
30o < βj < 66o is 70.7%.

Fig. 8  The proposed flowchart to compute the probability of failure (PoF) and Reliability Index (RI) from Limit Equilibrium and Numerical modelling for 
rock slope stability analysis and design
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The second condition for planar failure involves the 
probability of the dip direction of the planar plane 
(αj) being within 20o of the slope face (αs = N 268oE). 
This condition is mathematically expressed as αs 
− 20o ≤ αj ≤ αs + 20o, which simplifies to 248o ≤ αj ≤ 288o. 
The probabilistic analysis from the PDF reveals a value of 
0.103 (10.3%), as shown in Fig. 11b.

Another possibility of failure is a wedge from the inter-
section of joint set 1 (J1) and joint set 2 (J2). The plunge 
(βi) and trend (αi) are calculated from random values of 
dips and dip directions of J1 and J2, which are identified 
as βJ1 and βJ2 in the equation of Fig. 11e. In wedge failure, 
the first condition is like a planar failure where Φ < βi < βs; 
accordingly, the plunge of wedge failure probability is 
0.998, as shown in Fig.  11c. Furthermore, the trend (αi) 
is within 80o of the slope face (αj) in the second condi-
tion. The probability analysis from the PDF of trend (αi) 
distributions reveals 1, as shown in Fig. 11d. It means all 
10,000 simulated trends (αi) are within 80o of the slope 
face, as shown in Fig. 11b.

The planar and wedge failures only occurred when they 
met the Step 3 requirements in Fig.  7. The calculation 
of each probability of planar failure (PoP) and probabil-
ity of wedge failure (PoW) employs the intersection rela-
tionship (∩), where all conditions are required for slope 
failure. Accordingly, the probability of the first condition 

multiplies by the second condition for each failure. If one 
condition has a zero probability, PoP or PoW results are 0 
(failure will not occur). For instance, in planar failure, if 
the Φ < βj < βs is 0.707, and the dip direction (αj) within 
20o of slope face (αs) is 0. As a result, the probability of 
occurrence (PoP) is 0. The probability analyses reveal that 
the PoP and PoW values are 0.074 and 0.998 sequentially. 
The method to calculate Pop and PoW can be seen in steps 
3 and 4 of Fig. 7.

b.	 Probabilistic Empirical Rock Mass Classifications

The Q-slope method from Bar and Barton (2017) was 
selected to determine a steeper slope’s confidence inter-
val (CI). The Q-slope is an updated version of the Q-sys-
tem from Barton et al. (1974). Nevertheless, this Q-slope 
focuses on empirical analysis of rock slope stability, and 
the final output of this Q-slope is the possible steeper 
slope.

As mentioned in the previous section, the analysed 
rock slope is located in Indonesia and has wedge failure 
potential from planes J1 and J2. Rusydy et al. (2020a) 
employed the scanline method to determine the joint 
condition, orientations, and spacing. The scanline length 
is 71  m and is divided into seven sections, as shown in 
Table 3. Different sections reveal different joint numbers 

Fig. 9  The location of the investigated slope in Aceh Province, Indonesia
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(N), and in each section, the joint frequencies (λ) are 
defined to calculate the RQD values employing Priest 
and Hudson (1976) equation. The value of the joint set 
number (Jn) is taken from Bar and Barton (2017) and var-
ies in different sections. The Q-slope parameters are the 
discrete data developed by Bar and Barton (2017) in the 
ranking range. Nevertheless, in this research, those dis-
crete rankings are believed to have continuous data con-
ditions; hence, those discrete rankings can be justified.

As for joint roughness number (Jr), only joint set 1 
(J1) and joint set 2 (J2) are utilised for statistical prop-
erty analyses. A similar approach is applied for joint 
alteration number (Ja), where some joints are slightly 
altered (Ja value is 2) while others have thin clay filling 
(Ja value is 8). The last parameter in the Q-slope is the 
Stress Reduction Factor (SRFslope), consisting of SRFa, 

SRFb, and SRFc. Only the most adverse SRF is employed 
in Q-slope calculations. According to Bar and Barton 
(2017), the SRFa describes the rock slope’s physical con-
dition, while the SRFb relates to the slope stress/strength 
ratio. The SRFc defines the present of major discontinuity 
like a fault. In this case study, the slope has disturbances 
due to mechanical excavation during construction (SRFa 
value is 2.5), and some rock blocks are loose and vulner-
able to weathering (SRFa value is 5). The slope stress and 
strength are 2.9  MPa (at 120  m depth and using a unit 
weight of 0.024 MN/m3 and 74  MPa (UCS (σc), respec-
tively; thus, the ratio of σc/σ1 is 25.7 and categorised as a 
high stress-strength range (SRFb value is 2.5–5). No fault 
is present in this slope; thus, the value of SRFc is 0.

According to Bedi (2013), the RQD, Jr, and other 
parameters can be considered as triangular distribution 

Fig. 10  (a) The Stereography projection of observed dips from Rusydy et al. (2020a), (b) the dip orientations and the goodness-of-fit test for joint set 1 
(J1), (c) joint set 2 (J2)
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in the Q-system, and the input values for simulations 
are minimum, maximum, and mode values for each 
parameter, as shown in Fig.  12a – g. 10,000, 100,000, 
and 1,000,000 random values in Monte Carlo simula-
tion using the EnvStats package developed by Millard 
(2013) in R programming software for triangular data 
distribution. The results of 10,000 random values for each 
parameter are shown in Fig.  12a – g. In this slope, two 
discontinuity planes are favourable; hence, the values are 
1. Furthermore, this analysis assumes that it occurs in a 
wet environment, and the slope has unstable geological 
structure conditions; as a result, the Jwise value is 0.6.

Figure  12h shows the results of the variability of 
Q-slope output values in relative frequency histogram 

and PDF driven by the variability of input parameters. 
The type of Q-slope data distribution is a log-normal dis-
tribution, as revealed from fit distribution using the Cul-
len and Frey graph and Goodness-of-fit tests, as shown in 
Fig. 13a, b. This finding has a similar pattern distribution 
of the Q-system at the Shimizu tunnel in Japan (Lu et al. 
2022). The final output of the Q-slope is the steeper slope 
angle (β) calculated utilised in the equation denoted in 
Fig. 12. According to Bar and Barton (2017), that equa-
tion merely applies to the slope angle between 35o to 85o.

Figure 12i shows the final output of the steepest slope 
angle (β). The data distribution of the steepest slope angle 
(β) is normal distribution as revealed from the fit distri-
bution test (see Fig. 13c, d). The point estimate method 

Table 3  The input parameters for Q-slope probabilistic analysis
Parameters/Sections Dist. 

(m)
N λ RQD Jn Jr-J1 Jr-J2 Ja-J1 Ja-J2 SRFa SRFb

Section 1 9.9 9.0 0.9 90.9 4.0 Jr distribu-
tion at J1 
based on 
field data, 
total data 
are 37

Jr distribu-
tion at J2 
based on 
field data, 
total data 
are 25

Slightly altered joint 
wall, softening or low 
friction clay mineral 
coating, softening, 
clay mineral filling

Disturbance 
from excava-
tion, loose 
block, sus-
ceptibility to 
weathering

The height of 
the slope is 
approximate-
ly 120 m, with 
a high stress-
strength 
range, σc/
σ1 = 25.7

Section 2 10.0 15.0 1.5 85.2 6.0
Section 3 9.9 20.0 2.0 80.2 4.0
Section 4 10.1 16.0 1.6 84.4 12.0
Section 5 11.4 14.0 1.2 87.8 3.0
Section 6 11.0 10.0 0.9 91.0 6.0
Section 7 8.8 7.0 0.8 92.1 6.0
Minimum values 80.23 3.00 2.00 1.50 2.00 2.00 2.50 2.50
Maximum values 92.09 12.00 4.00 4.00 8.00 8.00 5.00 5.00
Mode values 87.00 88.00 3.00 2.00 4.00 4.00 3.75 3.75
Mean values 87.37 5.86 2.76 2.48 - - 3.75 3.75
Standard Deviation 4.01 2.75 0.71 0.74 - - - -

Fig. 11  The simulated probability density functions and their probabilities according to kinematic conditions of planar and wedge failures, (a) the PDF 
of dip of planar plane, (b) the PDF of dip direction of planar plane, (c) the PDF of plunge of wedge failure, (d) the PDF of trend of wedge failure, (e) the 
equations in calculating the trend and plunge, and the PDF of calculated trend compare to dip directions

 



Page 16 of 26Rusydy et al. Geoenvironmental Disasters           (2024) 11:28 

(PEM) determines the normal distribution data’s con-
fidence interval (CI). Hence, calculating the CI employs 
the PEM approach; the results for a different number of 
random values are shown in Fig. 12j. This Figure indicates 
that the CI for 80%, 95%, and 99% of the steepest slope 
angle (β) declined significantly as the number of random 
values increased. Most statistical analyses commonly 
use a CI of 95%. Thus, the probabilistic Q-slope analysis 
concludes that the steepest safe slope angle (β) for slope 
design must be between 62.31o – 62.50o for 10,000 ran-
dom values. This approach may be implemented in other 
rock mass classification techniques using the proposed 
flowchart in Fig. 6.

c.	 Probabilistic Limit Equilibrium (LE)

A case study from a slope in Indonesia using the limit 
equilibrium (LE) method is presented in this section. 
The previous kinematic analysis reveals that the wedge 
failure appeared to occur due to the intersection of joint 
set 1 (J1) and joint set 2 (J2). Furthermore, the probabi-
listic kinematic analysis in the previous section reveals a 
99.8% likelihood of a wedge failure (see Sect.  5.2.2a). A 

multitude of rock properties is employed in probabilistic 
LE analysis. Table 4 presents the input parameters. This 
table shows that some input parameters are distributions, 
while single values represent others due to a lack of data. 
The distribution of FoS is determined by utilising Swedge 
software from Rocscience.

The Swedge software is used to determine the FoS and 
PoF of a wedge failure using the LHS method to gener-
ate the random input values. In this case, the Psych R 
programming package developed by Revelle and Rev-
elle (2015) plots the correlation of inputs and outputs in 
probabilistic LE simulation from the Swedge program. 
Regarding the failure mechanism, the wedge failure 
occurs in this rock slope due to the intersection of two 
discontinuity planes (J1 and J2); thus, the Barton and 
Bandis (1982) failure criterion is employed in the anal-
ysis. The FoS of 1.5 is utilised as the reference value or 
safety limit between non-stable and stable areas because 
the case study is a rock-cut beside a highway (civil engi-
neering project).

This study conducts sensitivity analysis for six related 
input dips, JRC, normal stress, shear strength, plunge 
and safety factor (FoS). As presented in Fig.  14a, the 

Fig. 12  The result of example probability analysis for Q-slope rock mass classification at investigated slope in Aceh Province, Indonesia
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plunge (βi) has a high influence on FoS followed by JRC 
and shear strength Four scenarios, as shown in Fig. 14b-
e, have been developed. The values of PoF increase as 
the groundwater and lateral load from the earthquake 
are incorporated into the models. The consequence of 
groundwater filling the discontinuity planes on the PoF 
value is lower than the seismic load. Hence, this study 
neglects the groundwater and compares the two scenar-
ios with or without seismic load, as denoted in Fig. 14f.

This rock slope case study is approximately 10 km from 
the Aceh segment of the Great Sumatra Fault (GSF) sys-
tem. According to Ito et al. (2012); Rusydy et al. (2020b), 
the Aceh segment of GSF can generate earthquakes up to 
7 Mw (moment magnitude); hence, this rock slope can 
be subjected to significant seismic load. According to 
national seismic hazard maps of Indonesia developed by 
Irsyam et al.  (2020), for 1-second spectral accelerations 
and a 2% probability of exceedance in 50 years, the peak 

Table 4  The input parameters used in limit equilibrium analysis for wedge failure
Parameters Statistic distributions Mean SD Relative min Relative max
Slope (Lower Face) Slope Angle (o) - 66 - - -

Slope Face (o) - 268 - - -
Height (m) - 60 - - -
Bench width (m) - 100 - - -

Slope (Upper Face) Slope Angle (o) - 36 - - -
Slope Face (o) - 268 - - -

Joints orientations for Wedge Failure Dip of Joint 1 (o) Truncated LogNormal 58.22 16.51 31 89
Dip of Joint 2 (o) Truncated LogNormal 59.6 13.16 28 88
Dip Direction of Joint 1 Truncated Normal 305 13.95 272 330
Dip Direction of Joint 2 Truncated Normal 197 21.29 160 243

Joint Strength: Barton-Bandis JRC for Joint 1 Normal 10 4 2 16
JRC for Joint 2 Normal 10 4 2 16
JCS for Joint 1 (MPa) - 39 - - -
JCS for Joint 2 (MPa) - 39 - - -
Friction Angle (o) - 30 - - -
Friction Angle (o) - 30 - - -

Joint Water Pressure Hu Exponential 0.003 - 0 1
Seismic Force Seismic Coefficient - 0.1 - - -

Fig. 13  Fit distribution test results for the Q-slope and steepest slope (β). The fitdistrplus and Fitur R programming packages are employed in this analysis
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ground acceleration (PGA) in this rock slope is between 
0.4 and 0.5  g. Referring to Bray and Travasarou (2009), 
the 0.4–0.5  g of a 1-second ground motion period will 
yield 0.1–0.15 horizontal inertial force of seismic coef-
ficients. The simulation shows that the PoF is 0.11 with-
out the earthquake load; nevertheless, the PoF increases 
to 0.30 as it is loaded by 0.1 earthquake coefficient in the 
second scenario. In the thirst scenario with an earth-
quake coefficient of 0.15, the PoF elevates to 0.42, and the 
slope becomes unstable.

d.	 Numerical Modelling

The same slope is also analysed using numerical mod-
elling. The RS2 software from Rocscience is employed 
in the analysis, allowing input of the joint elements. 
The RS2 is a finite element method (FEM) applying the 
strength reduction method (SRM) to determine the FoS. 
The critical Strength Reduction Factor (SRF) revealed 
from the RS2 simulation determines the FoS. According 
to Hammah et al. (2008), including the joint element in 
continuum-based FEM produces reliable results, and this 
approach can capture the scale effect in discontinuous 

Table 5  The input parameter for numerical modelling
Properties/Parameters Type/Values
Failure criterion Jointed Generalised Hoek Brown 

(GHB) and
Generalised Hoek Brown (GHB)

Slipe criterion Barton – Bandis
Elastic Type Isotropic
Material Type Plastic
Unit Weight (MN/m3) 0.024
Poisson’s Ratio 0.25
Young’s Modulus (MPa) 20,700
UCS (MPa) 74
Normal Stiffness (MPa/m) 21,290
Shear Stiffness (MPa/m) 3400
GSI 54 refer to Rusydy and Al-Huda (2021)
Porosity 0.1
Average spacing (meter) 0.8
Average Length of a joint 
(meters)

10

Plunge/Dips Min: 40o, Mean: 46o, Max: 51o

JRC Min: 12, Mean: 13, Max: 14
Residual Friction Angle Min: 27.2o, Mean: 29.5o, Max: 32.0o

Type of Joint Networks Parallel Deterministic

Fig. 14  The example results of probabilistic limit equilibrium analysis for wedge failure (a) The correlation between inputs and outputs, (b) The PoF and 
CR when the slope free from groundwater and earthquake, (c) The PoF and CR when the groundwater fills the discontinuity planes without earthquake, 
(d) The PoF and CR when load by the earthquake without groundwater, (e) The PoF and CR with groundwater and earthquake lateral load. (f) The PDF of 
FoS different earthquake scenarios
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rock masses. The input parameters and the adopted strat-
egies in the modelling are shown in Table 5.

The RS2 provides the probabilistic outputs by generat-
ing numerous random outputs through the PEM, MCS, 
and Latin Hypercube approaches. Nevertheless, activat-
ing those options requires more time and a high-perfor-
mance computer for data processing. Instead of using 
those approaches, this study employs PEM to determine 
the range of value of 95% of CI for three significant input 
parameters (Plunge/Dips, JRC, and Friction Angle) in 
modelling. The sensitivity analysis in the previous section 
reveals that plunge/dips of joint and JRC highly influence 
the output. This PEM incorporates Box-Behnken Design 
(BBD) to calculate the second-order polynomial in esti-
mating the response function. In the BBD approach, the 
input variables are randomly developed into three lev-
els of values: (-1) as the minimum value, (0) as the mean 
value, and (1) as the maximum value.

Accordingly, 78 models are developed in different com-
binations of input values on three different scenarios and 
two failure criteria, jointed and homogenous GHB. The 
FoS results obtained from the runs/simulations are pre-
sented in Table 6; Fig. 15. BBD’s minimum and maximum 
input values are calculated from PEM (95% CI) analy-
sis from their distributed data of dips/plunge, JRC, and 
residual friction angle (Φr). The slope geometry and the 
results of rock slope numerical modellings are illustrated 

in Fig.  15. Regarding seismic load, this study employed 
pseudo-static seismic coefficients of 0.1 and 0.15 for sim-
plification purposes.

The goodness-of-fit tests are performed to determine 
the type of data distribution of FoS in different scenarios. 
The results for the goodness-of-fit test reveal that the 
log-normal data distribution is suitable for FoS in the fol-
lowing scenarios: dry conditions without earthquakes, 
earthquake coefficient 0.1, and earthquake coefficient 
0.15. The MCS generates 10,000 random values of FoS for 
each scenario based on the statistical parameters of FoS’s 
results. This simulation reveals the FoS data distribution 
in different scenarios and its PDF, as denoted in Fig. 16d. 
Different failure criteria reveal different results of FoS, 
as illustrated in the boxplot in Fig. 16a. More details are 
explained in discussion section.

Discussion
This study has developed the flowchart of probability 
method for four slope stability methods (see Figs. 6 and 7, 
and Fig. 8) for more detail. In all probabilistic processes, 
it is emphasised that developing the stochastic model 
and determining the typology of data distribution for 
rock properties are crucial steps for both frequentist and 
bayesian statistic approaches. Therefore, the selection 
of data distribution type must be made based on previ-
ous studies and validated through the goodness-of-fit 

Table 6  The result of FoS in different scenarios of BBD’s patterns and slope conditions
Run Order BBD’s 

Patterns
Running Parameters Based on BBD’s Pat-
tern and PEM

FoS from Numerical Modelling in different Failure criteria and 
scenarios

GHB and Joint Network Jointed GHB and Joint 
Network

Plunge/ 
Dips (o)

JRC Φr(
o) Dry Seismic 

Coeff. 
(0.10)

Seismic 
Coeff. 
(0.15)

Dry Seismic 
Coeff. 
(0.10)

Seis-
mic 
Coeff. 
(0.15)

1 -1 -1 0 40.0 12.0 29.5 2.24 1.91 1.75 1.82 1.50 0.91
2 1–1 0 51.0 12.0 29.5 2.30 1.90 1.75 1.74 1.11 1.30
3 -1 1 0 40.0 14.0 29.5 2.30 1.98 1.75 1.87 1.57 1.39
4 1 1 0 51.0 14.0 29.5 2.39 2.02 1.86 2.00 1.66 1.58
5 -1 0–1 40.0 13.0 27.2 2.28 1.96 1.75 1.69 1.35 0.90
6 1 0–1 51.0 13.0 27.2 2.24 1.88 1.79 1.44 1.08 0.99
7 -1 0 1 40.0 13.0 32.0 2.30 1.96 1.77 1.82 1.50 0.99
8 1 0 1 51.0 13.0 32.0 2.30 1.95 1.73 1.87 1.27 1.13
9 0–1 -1 46.0 12.0 27.2 2.25 1.94 1.70 1.64 1.02 1.02
10 0–1 1 46.0 12.0 32.0 2.34 1.94 1.75 1.93 1.32 1.14
11 0 1–1 46.0 14.0 27.2 2.20 1.93 1.77 1.61 1.14 0.99
12 0 1 1 46.0 14.0 32.0 2.19 1.95 1.71 1.97 1.21 1.17
13 0 0 0 46.0 13.0 29.5 2.29 1.93 1.78 1.78 1.13 1.12
Statistical Parameter ofFoSfor log-normal data 
distributions

Mean Log 0.82 0.66 0.56 0.57 0.25 0.10
SD Log 0.02 0.02 0.02 0.09 0.15 0.16
Minimum 2.19 1.88 1.70 1.44 1.02 0.90
Maximum 2.39 2.02 1.86 2.00 1.66 1.58
Range 0.20 0.14 0.16 0.56 0.64 0.68
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Fig. 16  (a) The boxplot of FoS in different scenarios from numerical modelling. (b) The goodness-624 of-fit test of FoS from Jointed GHB in 0.1 earthquake 
coefficient. (c) The goodness-of-fit test of FoS from GHB. (d) The PDF of simulated FoS for jointed GHB failure criterion in different scenarios

 

Fig. 15  (a) The bird’s view of the investigated slope and its geometry from Google Earth. The result of numerical modelling. (b) Run 1 jointed GHB with 
no earthquake. (c) Run 9 Jointed GHB in 0.15 of earthquake coefficient. (d) Run 9 GHB in 0.15 of earthquake coefficient
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tests method, considering that different rock properties 
may follow different distribution types. Even when deal-
ing with similar parameters, it leads to varying outcomes. 
The chosen data distribution type will influence the sta-
tistical parameters used in the probabilistic analysis, and 
each proposed flowchart presents a novel approach com-
pared to previous studies. The following paragraphs pro-
vide a comprehensive discussion of proposed flowcharts 
and implementation of flowcharts.

Proposed flowcharts
In the proposed flowchart for the RMC approach, this 
study classifies all input variables into six groups. It is 
important to note that all those variables have both 
aleatory and epistemic uncertainties. During the data 
acquisitions, some data are collected as discrete data fol-
lowing standard rankings from established RMCs, such 
as the joint number (Jn), joint roughness (Jr), and joint 
alteration (Ja) in Q-system and environment condition 
(Jwise) Q-slope classifications, and various others dis-
crete parameters. This study recommends converting 
the discrete data to continuous data employing continu-
ous functions equations, either developed in previous 
research or new continuous functions.

Probabilistic kinematics assumes each failure has prob-
abilities depending on the dip, dip direction, and friction 
angle variabilities. These variables are considered inde-
pendent because no correlations have been found among 
them. Accordingly, the multiplication rule is applied in 
calculating the probabilities of different failure types. 
The proposed flowchart in Fig. 7 provides a comprehen-
sive and systematic approach to conducting probabilistic 
kinematic analysis. The proposed flowchart quantifies all 
kinematic conditions for planar, wedge, and toppling fail-
ures mathematically and illustrates how probability cal-
culations are performed in detail.

The Monte Carlo Simulation (MCS), Point Estimate 
Method (PEM), Bayesian analysis, and Markov Chain 
Monte Carlo (MCMC) are the most used probabilistic 
approaches for input variables in both Limit Equilib-
rium (LE) and numerical modelling. In some cases, these 
methods are combined with techniques such as FORM 
(first-order reliability method), SORM (second-order 
reliability method), response surface method, and RS-
DEM (random set district element method). In addition, 
the LE method requires providing the type of failure from 
kinematic analysis. In comparison, FEM numerical mod-
elling does not require this input.

Implementation of flowcharts
Furthermore, implementing the proposed probabilistic 
analysis in four different methods yields varying results, 
as found in the case study where the proposed flowcharts 

were implemented. Here, we discuss the critical findings 
from implementing these proposed flowcharts.

In kinematic analysis, both planar and wedge failures 
can occur independently. Therefore, those failures have 
union connections (U), and the series system is applied, 
as noted in Eq. 4. Dip and dip direction, plunge, as well 
as trend, are independent variables. Hence, the multipli-
cation rule is applied to compute the value probabilities 
of failure. Notably, this probability value does not repre-
sent the overall probability of failure for this slope, which 
is 0.998 (99.8%). Instead, it determines the likelihood of 
specific types of failure occurring, which is relevant to 
the risk perspective in the investigated slope.

Due to its recent applicability in civil and mining 
engineering projects, the proposed research flowchart 
for rock mass classification has been implemented to 
Q-slope. The safe steepest slope angle (β) variability 
resulting from probabilistic analysis is represented in 
confidence interval (see Fig. 12j). Nevertheless, the distri-
bution of β values in Fig. 12i falls within 50o – 80o. This 
result supports field observation that the slope angle is 
66o and the slope remains stable. Therefore, this outcome 
confirms the reliability of the Q-slope analysis in tropi-
cal countries, and the probability analysis of the Q-slope 
provides a range of β values. Additionally, Q-slope prob-
ability analysis offers engineers a wider range of slope 
angles (β) to choose from before starting excavation or 
slope development, whether in civil engineering or min-
ing projects.

The LE and FEM numerical modelling are conducted 
under various scenarios and failure criteria. The LE anal-
ysis indicates stable conditions under dry and saturated 
conditions without an earthquake load (see Fig.  14bc). 
This outcome is consistent with observations made in the 
field. Further analysis revealed that the LE method pre-
dicted an unstable slope when seismic loads were gener-
ated. Wyllie (2018) mentions that a slope angle of more 
than 25o is vulnerable to failure under seismic loads. 
Other factors that may influence the stability of this slope 
under seismic load including weathering, discontinuity 
characteristics, induration, and groundwater presence. 
It should be noted that the LE method only considers 
the forces acting on the slope and cannot determine the 
movement and stress concentration within the slope. 
Consequently, the LE method is limited in capturing the 
complexity of rock slope failure. Therefore, this research 
conducts numerical modelling under different failure 
criteria, including the general GHB and jointed GHB, as 
well as various earthquake scenarios.

As regard FEM numerical modelling, This PoF for 
jointed GHB numerical modelling was lower than that 
obtained through the probabilistic LE approach for a 
similar slope, specifically under dry conditions. This dif-
ference arises because the LE model employs Swedge 
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software and considers the wedge plane’s long persis-
tence. In contrast, FEM numerical modelling consid-
ers the “rock/intact bridge” between the joint, and it is 
defined in the model (see Fig. 15a for rock/intact bridge 
illustration). Hence, the FoS in the LE model tends to be 
lower than in numerical modelling.

In the seismic load scenarios, the PoF increases to 
0.84 (84%) and 0.97 (97%) for earthquake coefficients 
of 0.1 and 0.15, respectively, in numerical modelling. 
These PoFs are significantly higher than those obtained 
from probabilistic LE, which are only 0.3 (30%) and 0.4 
(40%). The results indicate that in numerical modelling 
using the Generalised Hoek-Brown criterion, all FoSs are 
higher than the safety limit (1.5). It implies that the slope 
remains stable under any circumstances and with similar 
input parameters. This result aligns with the findings of 
Sari (2019), which also noted that the jointed GHB yields 
lower FoS compared to homogenous GHB.

Another significant finding in this study is that the 
range of FoS obtained using the jointed GHB criterion 
is higher than the homogenous GHB criterion (refer to 
Table  6 and boxplot in Fig.  16a). These findings dem-
onstrate that the jointed GHB criterion produces high 
uncertainty in FoS outputs compared to homogenous 
GHB, which yields low uncertainty outputs. These differ-
ences in FoS outputs are known as modelling uncertainty 
(epistemic uncertainty), which yields from the math-
ematical and mechanical processes employed during 
modelling. Distinct modelling criteria result in varying 
outcomes because the calculation procedure differs.

Additionally, the case example provided for numeri-
cal modelling above illustrates how aleatory uncertainty, 
naturally inherent in rock properties like dips, JRC, and 
friction angle (Φ), can be addressed. Furthermore, the 
example of a case study conducted with different fail-
ure criteria underscores how epistemic uncertainty is 
revealed in the modelling process.

Jointed and homogenous GHB reveal different results 
regarding the type of failure and rock displacement. In 
the Jointed GHB model, the slip surface follows the joint 
dip or plunge in wedge failure (see Fig.  15b and c). In 
addition, in numerical modelling with jointed GHB cri-
terion, an altered failure surface can be observed, accord-
ing to Hammah et al. (2008). In the homogeneous GHB 
model, the slip failure typically follows a circular pattern 
(see Fig. 15d). Given that, the investigated rock exhibits 
unfavourable joint orientation and that joints mostly con-
trol the failure mechanism. Therefore, the failure mech-
anism from the jointed GHB model is considered more 
reliable and representative of the site condition.

The total probability of failure
The final novelty of this study involves the calculation 
of the total Probability of Failure (PoF) by integrating 

various methodologies. The integrated probability rock 
slope stability analysis represents a robust approach for 
addressing aleatory and epistemic uncertainties. More-
over, rock slope failures in mining and civil engineering 
projects can significantly impact transportation connec-
tivity and mining operations, disrupting moving vehicles 
and road/track blockages. The combined total PoF and its 
associated consequences collectively determine the risk 
of slope failure, known as Quantitative Risk Assessment 
(QRA).

The total PoF is calculated by multiplying the kine-
matic and kinetic results probabilities, as outlined by 
Budetta (2020); Obregon and Mitri (2019). This study 
presents the kinematic probability result in subsection a, 
while the kinetic probability is derived from limit equi-
librium (subsection c) combined with numerical model-
ling (subsection d) result. Both the limit equilibrium (LE) 
and numerical modelling/Finite Element Method (FEM) 
approaches exhibit distinct methodologies for calculat-
ing the FoS; nevertheless, several input parameters are 
shared between these methods. This study considers the 
LE and FEM are independent and not mutually exclusive. 
Accordingly, the additive rule described by Walpole et 
al. (2011) can be applied as the union of two events or as 
the complement of certain events. Equation 5 expresses 
the calculation of the kinetic probability, and Eq. 6 out-
lines the computation of the total PoF. The summary of 
all conducted approaches and total PoF in this study as 
denoted in Table 7.

	

P (LE ∪ FEM ) = P (LE) + P (FEM)
− P (LE ∩ FEM)

� (5)

	

Total of PoF = [P (LE ∪ FEM )]
× [P (Kinematic)]

� (6)

Conclusions
Mining and civil engineering projects have distinct rock 
slope stability and analysis requirements. This study con-
cludes that both disciplines consider geological struc-
tures essential for slope stability. However, the degree 
of reliability, long-term stability, the factor of safety, and 
other factors have different standards. Moreover, both 
projects must consider the variability of rock proper-
ties as a fundamental input in slope stability analysis and 
design.

This study develops numerous design methodology 
flowcharts that serve as basic guidelines for probabilistic 
analysis in rock slope stability studies. Furthermore, the 
case studies implementing the flowchart provided in this 
paper demonstrate the applicability of these flowcharts 
to probabilistic rock slope stability studies. The results 
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of the probabilistic kinematic analysis reveal the poten-
tial types of failure that can occur and their relation from 
a risk perspective. The probabilistic empirical rock mass 
classifications show the conditional probability of each 
rock mass class or the confidence interval (CI) of the out-
put. Different failure criteria and scenarios lead to various 
outcomes in limit equilibrium and numerical modelling. 
Incorporating the joint network into the model using the 
jointed GHB criterion results in a decreased Factor of 
Safety (FoS) and an increased Probability of Failure (PoF) 
compared to the homogenous GHB. The type of failure 
also differs in these analyses. These differences are known 
as modelling uncertainty resulting from the mathemati-
cal-mechanical process during modelling.

This paper has made numerous contributions to rock 
engineering studies, including (i) Defining the difference 
between civil and mining engineering projects regard-
ing rock slope design and development requirements. 
(ii) Developing comprehensive flowcharts for probabi-
listic analysis in four different methods. (iii) Introducing 
the probabilistic Qslope method for empirical rock mass 
classification approach and probabilistic kinematic anal-
ysis to determine the probability of occurring for wedge 
(PoW), planar (PoP), and toppling (PoT) failures as well as 
the total probability of occurring (PtK). (iv) The sensitivity 
analysis between input and output values in probabilistic 
limit equilibrium is plotted and analysed, as well as the 
influence of different earthquake scenarios on the PoF. (v) 
Comparing probabilistic limit equilibrium and numeri-
cal modelling in different failure criteria and scenarios. 
(vi) and introducing the total PoF by combining prob-
abilities from limit equilibrium (LE), numerical model-
ling, and kinematic analyses in various scenarios. As for 
future research, this study suggests employing the slope 
stochastic seismic dynamic analysis in rock slope stability 
for active tectonic countries. Another step from the total 

probability result is exploring risk analysis for rock slope 
failure as a potential avenue.
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Table 7  Summary result of four rock slope assessments and total PoF
No. Methods Probability of Occurrence for Kinematic and PoF CI 95%

No Earthquake Earthquake Coeff. 
0.10

Earthquake Coeff. 
0.15

1 Probabilistic Kinematic (wedge 
failure)

99.8% 99.8% 99.8% -

2 Probabilistic Rock Mass Classifica-
tions (Q-Slope)/Steeper slope

- - - 62.31o 
– 62.50o

3 Probabilistic Limit Equilibrium 11.0% 30.0% 42.0% -
4 Probabilistic Numerical Modelling 

Jointed GHB
3.0% 84.0% 97.0% -

5 Probabilistic Numerical Modelling 
GHB

0.0% 0.0% 0.0% -

Total PoF for Jointed GHB 13.64% 88.62% 98.06% -
Total PoF for GHB 10.98% 29.94% 41.92% -
Coefficient of Reliability for Jointed GHB 86.36% 11.38% 1.94% -
Coefficient of Reliability Index for GHB 89.02% 70.06% 58.08% -
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