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Abstract

Background: Support vector machine (SVM) modeling is a machine-learning-based method. It involves a training
phase with associated input and a predicting phase with target output decision values. In recent years, the method
has become increasingly popular. The aim of this study is to carry out prediction of earthquake-induced landslides
distribution in the area affected by the April 20 2013 Lushan earthquake based on GIS and the SVM model.
The current study was undertaken to investigate the prevalence of Impaired Fasting Glucose (IFG)/Type 2 Diabetes
(T2D) and its risk factors in the adult population in Biyem-Assi-Yaoundé, Cameroon.

Results: A detailed inventory map containing 1289 landslides triggered by this earthquake was produced through
interpretation of colored aerial photographs and extensive field surveys. Elevation, slope angle, slope aspect, land
cover, distance from co-seismic faults, peak ground acceleration and geology unit were selected as the controlling
parameters. Cross validation with grid search method were used to search the best modeling parameters. A grid
cell size of 60 × 60 m was adopted to produce the landslide susceptibility maps. The study area was divided into
186175 grid cells and each grid consisted of seven layers representing the controlling parameters. 70% of the total
landslides (1782 grid cells) were used as positive training samples and 1782 randomly selected points on the stable
slopes were treated as negative training samples in concert with four kernel functions: linear, polynomial, radial
basis function and sigmoid. These results were further validated using area-under-curve (AUC) analysis of success-
rate curves and prediction-rate curves. Comparative analyses of landslide-susceptibility and area relation curves
show that both the polynomial and radial basis function suitably classified the input data of both training dataset
and validating dataset, though the radial basis function was a bit more successful in success rate curves. Four cases
of landslide susceptibility were mapped. The generated landslide-susceptibility maps were compared with known
landslide. About 20%-30% of the study area 26 (Linear 34.78%, Polynomial 30.49%, and radial basic 23.83%) was
categorized into high and very high susceptible zones during the Lushan earthquake, containing more than 70%
occurrence of landslides triggered by the earthquake (Linear 74.16%, Polynomial 85.32%, and radial basic 86.71%).
However, in maps with sigmoid function, 62.27% of the area was found to be highly susceptible to landslides
during the earthquake with almost the entire landslides occurrence.

Conclusion: Most of the high susceptible and very high susceptible area was concentrated along the seism genic
faults with a PGA of more than 0.52 g. This paper provide an example for selecting appropriate types of kernel
functions for prediction mapping of seismic landslides using support vector machine modeling. The susceptibility
maps for earthquake-induced landslides can be useful in landslide hazard mitigation by helping planners
understand the probability of landslides in different regions.
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Background
Landslide is one of the most severe natural hazards in
the world, causing thousands of death and great property
loss per year. Earthquake is a dominant trigger of land-
slides in mountainous and tectonic-active areas. Landslides
induced by an earthquake are usually large in number,
huge in scale and wide in distribution. Earthquake-induced
landslides can bring great damages to property and infra-
structures in developed areas, leading to economic losses
and fatalities sometimes. For example, more than 20,000
people were killed by landslides induced by the 2008
Wenchuan earthquake with a magnitude of Ms 8.0 and 34
large barrier lakes were produced, which threatened the
residents who lived downstream of these dams [Yin et al.
2009]. In the 2010 Yushu earthquake (Ms 7.1) about 60
million in damages and 8 deaths were directly caused by
earthquake-induced landslides [YP Yin et al., 2010].
Earthquake-induced landslides were hard to predict, but

could be evaluated. Identifying a region’s susceptibility
to landslides during an earthquake was an effective and
most economical way to provide planners with fore-
knowledge of dangerous regions thereby helping with
land management and infrastructure planning. For
earthquake-induced landslide, landslide susceptibility
assessment was to evaluate location of landslide suscepti-
bility zones where landslides could be induced in future
earthquake shaking. Many different methods and tech-
niques for assessing landslide susceptibility have been
proposed and tested. These have already been systemat-
ically compared and their advantages and limitations
outlined in Carrara et al. 1999, Huabin et al. 2005 and
van Westen et al. 2008. Both deterministic and statistical
methods have been used in earthquake-induced landslide
susceptibility. For deterministic methods, assessment of
earthquake-induced landslide susceptibility on a regional
scale commonly required the employment of an analyt-
ical slope-stability method and the infinite-slope model
[Jibson and Keefer, 1993; Jibson et al., 2000; Refice and
Capolongo, 2002]. The deterministic method required
calculation to determine the limit-equilibrium of the
slope stability given the strength parameters of mass,
failure depth, and groundwater conditions for every
calculation point in the study area. This requirement
caused immense problems in terms of data acquisition
and control of spatial variability of the variables ([Carrara
et al., 1999]. For statistical method, it was most common
to use a statistical approach where landslide inventories
and causative factors are utilized to build a susceptibility
model for the prediction of future landslides. For instance,
Kamp et al. 2008 carried out spatial prediction of land-
slides related to 2005 Kashmir earthquake-induced by
use of a multi-criterion method. Lee et al. 2008 applied
multivariate statistical methods in a study of shallow
earthquake-induced landslides in central western Taiwan.
The results showed that landslide distribution can be
predicted. Landslides induced by Wenchuan earthquake
were assessed and predicted by Su et al. 2010 using
logistic regression models, and were compared with the
bivariate statistics, artificial neural networks, and support
vector machine models by Xu et al. 2012a.
Among these approaches, the support vector machine

(SVM) model has become increasingly popular. The
SVM was originally developed by [Vapnik, 1995] as a new
machine learning algorithm for pattern classification and
non-linear regression. The main procedure involved in
SVM modeling is a training phase with associated input
and target output values. Recently, several authors have
applied the SVM model successfully on landslide suscep-
tibility mapping. [Gallus et al., 2008] compared several
classification approaches of SVM, Gaussian process, and
LR modeling, with SVM having the best results. [Xu et al.,
2012b] examined the use of SVM model for landslide
susceptibility mapping in an earthquake zone with com-
bination of 4 kernel functions and 3 different training sets
and found that radial-basis and polynomial kernel func-
tions were suitable for modeling with any input training
data. [Xu et al., 2012b] applied 6 different models in
susceptibility mapping of landslides induced by the 2008
Wenchuan earthquake with SVM having a second best
results outranked only by logistic regression. [Kavzoglu
et al., 2013] also made a comparison of susceptibility
results from multi-criteria decision analysis, SVM, and
logistic regression and showed that multi-criteria decision
analysis and SVM methods were better than logistic
regression in shallow landslides susceptibility mapping.
These applications proved that when used properly, SVM
model in landslide susceptibility mapping might produce
a good result. Two outstanding advantages of the SVM
are: (a) Based on the principle of minimization structural
risk; (b) Guarantee its performance by solving constrained
quadratic form. Theoretically, it can achieve the optimal
prediction result by using the SVM model. Its detailed
mathematical formulas are introduced in [Vapnik and
Cortes 1995].
In this study, we propose the application of SVM

model to produce a landslide susceptibility map of the
area hit by the April 20, 2013 Lushan earthquake on the
ArcGIS platform. The goal of the study is to produce a
relatively accurate landslide susceptibility map with optimal
kernel functions. The 4 resultant cases are compared using
AUC (area under curve) analysis to verify the susceptibility
mapping results. This is done by comparisons with known
landslide locations to establish the model’s success rate, and
its predictive accuracy.

Study area
On April, 2013, an Ms 7.0 earthquake, with a maximum
source intensity of up to 9.0 on Chinese seismic scale,
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struck Lushan county, Sichuan province, west China.
The epicenter of the main shock was located in 30.3°N,
103.0°E, about 100 km southwest of Chengdu (Figure 1).
The earthquake occurred on the southern segment of
the Longmenshan fault zone. This area was celebrated
for steep mountain landscapes and heavy tectonics. The
April 20 earthquake was an strong aftershock of 2008
Wenchuan earthquake and were the most devastative
earthquake in China since the 2008 Wenchuan earth-
quake [Wei-Min et al., 2013].
The study area had experienced serious shallow land-

slides during this earthquake, since the steep slopes and
jagged ridges were susceptible to landslide while suffer-
ing heavy ground shaking. Topography of the study area
ranges from river valley to mountainous. Elevation of
the study area ranges from 596 m to 2872 m. Land use
includes mainly cropland distributed on the ridges, slope
wasteland on side-slopes and gullies and town in flat
river valleys. Due to long-term human activity, many parts
of the natural vegetation have been destroyed. Because
it was right time for vegetation, earthquake-induced
landslides were easy to be recognized according to
landslide scars on aerial photos. Landslides triggered by
the Lushan earthquake can be mainly classified into
following types (Figure 2): (1) shallow-disrupted slope
failures; (2) rock avalanches; and (3) deep-seated rocky
or soil slides. Shallow-disrupted slope failures with a
a

b

c

Figure 1 (a) Location of Sichuan Province; (b) Location of the study a
geology units is listed in Table 2. Unit ‘g’ for Peak ground acceleration (PGA
composition of weathered and fractured superficial soils
and rocks were widespread throughout the whole study
area, because they could be triggered easily by weak
shaking. Rock avalanches are usually originated on a
high place along the river and road banks, with large
potential energy, resulting in a high speed and a long
run-out distance during sliding process. Deep-seated
landslides are mainly distributed within a short distance
from the main co-seismic ruptures, since only a strong
ground shaking could trigger them.
This area was very tectonic-active with many folds and

active faults trending NW–SE (Figure 1). The bedrock
exposure in the area was dominated by Mesozoic volcanic
rocks and Mesozoic group. The volcanic rocks, which
comprised tuffs and lavas with intercalated sedimentary
rocks. Intrusive rocks consisted mainly of granites, sand-
stone and dykes of various compositions. As a result of
the abundant supply of rainfall and the local rich ground-
water, almost all rocks in the study area had undergone a
certain degree of weathering. In many slopes, weathering
had penetrated deep into rock masses through joints and
bedding planes (Figure 2).

Methods
Support vector machine (SVM) modeling
Support vector machine (SVM), as the representative’s
kernel-based techniques, is a major development in
rea; and (c) Geological settings of the study area. Explanation of
) means acceleration of gravity.



Figure 2 Typical types of landslides. (a) Rock avalanches, (b) translational slides and (c) shallow-disrupted slope failures.
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machine learning algorithms. SVM is a group of
supervised learning methods based on the statistical
learning theory and the Vapnik-Chervonenkis (VC)
dimension introduced by [V Vapnik and Cortes, 1995]
and [Chervonenkis, 2013] that can be applied to pattern
classification or non-linear regression.
For the linear separable condition, consider a set of

training vectors with two classes as follows:

D ¼ x1; y1ð Þ; x2; y2ð Þ; ⋅⋅⋅; xn; ynð Þf g ð1Þ
where xi ∈X ⊂ Rm, yi ∈ {1, − 1}, i = 1, 2, ⋅ ⋅⋅, n, that can be sep-
arated the two classes [1, −1] by a hyper-plane (Figure 3):

w⋅xð Þ þ b ¼ 0; w∈RN ; b∈R ð2Þ
where w is the normal of the hyper-plane, b is a scalar
base, and (·) denotes the scalar product operation.
After normalization, the geometrical margin between

the two groups can be expressed as 2
wk k. The operation of

the SVM algorithm is to find the hyper-plane that gives
the largest geometrical margin to the training examples.
The maximum 2

wk k can be expressed as:

Minimize
w;b

1
2

wk k2 ð3Þ

Subjecting to constrains:

yi w
Txi þ b

� �
≥1 i ¼ 1; 2; :::::; n ð4Þ

Introducing the Lagrangian multiplier, the cost function
can be defined as:
ϕ w; b; αð Þ ¼ 1
2

wk k2−
Xn
i¼1

αi yi w⋅xi þ b½ �−1ð Þ ð5Þ

where α ¼ α1; α2;…; αnð ÞT∈Rn
þ is the Lagrangian multi-

plier, and the problem can be solved by dual minimization
of Equation (5) with respect to w and b through standard
procedures Equation (6). More detail of SVM was discussed
in [Vapnik 1995].

∇bϕ w; b; αð Þ ¼ 0
∇wϕ w; b; αð Þ ¼ 0

�
ð6Þ

Mostly, however, the training vectors are non-separable,
[Vapnik 1995] introduced an slack variables ξi modified
the constraints as follows:

yi w⋅xið Þ þ bð Þ≥1−ξ i; i ¼ 1; 2; ⋅⋅⋅; n; ξ i≥0 ð7Þ

To avoid a high value of ξi, some kind of penalty term C
was introduced into the original optimization Equation (3),
which can be modified as:

Minimize
1
2

wk k2 þ C
Xn
i¼1

ξ i ð8Þ

where C > 0 is the penalty factor to control the trade-off
between the maximum margin and the minimum error.
Additionally, a kernel function k(xi, xj) is introduced by
[Vapnik 1995] to transform the originally non-linear data
pattern to a linear one in higher dimensional feature
space (Figure 3).
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Figure 3 Illustration of SVM model. (a) n-dimensional hyperplane differentiating the two classes with maximum gap; (b) non-separable case and the
slack variables ξ; (c) transformation using kernel function of the originally non-linear data pattern to a linear one in higher dimensional feature space (d).
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Selection of the kernel function is the main issue in SVM
modelling. Theoretically, any function that satisfy the
Mercer criteria can be used as kernel function, however,
some of them work well in a wide variety of applications.
The mathematical representation of some kernel functions
are listed below:

Linear : K xi; xj
� � ¼ xTi xj ð9Þ

Polynomial : K xi; xj
� � ¼ γxTi xj þ r

� �p
; γ > 0 ð10Þ

Radial basis function : K xi; xj
� � ¼ e −γ xi−xjk k2

� �
; γ > 0 ð11Þ

Sigmoid : K xi; xj
� � ¼ tanh γxTi xj þ r

� � ð12Þ
where γ is the gamma term in all the kernel function
except linear; p is the polynomial order term in the
kernel function for the polynomial kernel; r is the bias
term in the kernel function for the polynomial and
sigmoid kernels. Proper parameters, such as the order of
polynomials and width of radial basis function, play a
key role in governing the accuracy of the SVM modeling.
Of these functions, polynomial and radial basis function
(RBF) are the most-used kernels and are utilized in our
research due to its good generalizing properties.
In reality, the unstable slope cases (with landslides) are

recognized as positive pattern, while stable slope cases
(without landslides) are recognized as negative pattern.
Note that we often commonly have only a one-class
dataset without negative data. One-class SVM models
also have been developed, but their theories are not reach
perfection and they produce poor prediction efficiency
than two-class SVM [Guo et al., 2005; Yao et al., 2008].
Hence, a two-class SVM modeling is utilized in this study.
To carry out the two-class SVM modeling, we estab-

lished a spatial database containing all the landslides
triggered by the earthquake and their controlling parame-
ters. Then all the data layers were classified and rasterized
in Arcgis and coded in Matlab7.01. The landslides as well
as the same amount of selected stable slopes were ran-
domly divided into two groups for training and validation
purpose, respectively. We use the training dataset as input
to train the SVM model, then the testing dataset were
used to examine the model. Both the training and valid-
ation phase were completed in Matlab 7.01. Finally, all the
cells in the study area were input into the established
model for possibility prediction of landslide occurrence.

Data
Two kinds of data were indispensable in the two-class
SVM modeling: (1) Units with landslides and units
supposed to be considered as stable and conditions of
these units and (2) Conditions of units that needed to be
predicted. The former were samples used to train the
two-class SVM model, while the latter were used as the
input of the trained model to predict risk of region
including them. All of the data representing a categorical
attribute should be converted into numeric code before
entering the SVM model.
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Landslide inventory
Institute of Remote Sensing and Digital Earth (RADI) of
the Chinese Academy of Sciences (CAS) took airborne
images with a high-resolution of 0.6 m covering the
earthquake-affected area on the morning right after the
earthquake. Except a little part was masked by cloud,
most of earthquake damage in this area was shown clearly
on these image. All of these high-resolution images as well
as a preliminary interpretation of earthquake-induced
geo-hazards were proposed on Geo-Information Platform
of Lushan Earthquake [Institute of Mountain Hazard
and Environment, C. A. o. S., and Geomatics Center of
Sichuan Province 2013] based on Tianditu online map
service [Chen et al., 2013]. Due to a critical use for rescue
after earthquake, this preliminary landslide inventory was
incomplete, only location of suspected landslides were
available.
The accurate detection of landslides is vital for land-

slide susceptibility analysis, so an inventory of landslides
triggered by April 20 Earthquake was made with the
help of Arcgis server. Firstly, the high resolution images
provided by Tianditu map service were invoked into
Arcgis through Arcgis server. These images were specified
as the based map. Then, an empty vector layer with the
same coordinate system as the base map was created for
the storage of landslides. After that, experts in earthquakes
and geo-hazards were called upon to visually interpret
the base map according to their experiences, knowledge
as well as previously identified landslide points. High-
resolution pre-event satellite images of RADARSAT-2
and SPOT-4 (see Table 1) of the study area were
geometrically rectified and matched to be taken into
consideration as a contrast. The boundaries of landslides
were interpreted on the base map and transformed into
vector format and stored in ArcGIS system. A filed survey
was finally conducted to check the accuracy of the
interpretation, following which the interpreted images
were modified. The resultant landslide inventory map is
shown in Figure 4. Landslide–area ratio(LAR), defined
as the percentage of the area affected by landslide activity,
and landslide number density (LND) gives the number
of landslides per square kilometer. In this study area,
LAR = (4.26 km2/674.45 km2) × 100% = 0.63% and LND =
1289landslides/674.45 km2 = 1.91 km− 2.
Table 1 Images used in ArcGIS for interpretation

No. Type Date Mode/resolution

11 RADARSAT-2 2012-03-04 WIDE/30 m

21 SPOT-4 2011-04-09 PAN/6.25 m

31 SPOT-4 2011-04-09 MS/12.5 m

4 Airborne images 2013-04-20 0.6 m
1Data source can be found on http://www.radi.ac.cn/yaan/yaanphoto/.
Controlling parameters of landslides
Seven environmental variables were used to train the
model and to predict the potential distribution for land-
slides (Figure 5 and Table 2). These variables included:
(1) slope gradient, (2) slope aspect, (3) land cover, (4)
distance to fault, (5) peak ground acceleration (PGA)
distribution of April 20 Lushan earthquake, (6) elevation,
(7) geology unit. The above selections were made based
on the authors’ knowledge of the physical environment
and landslides in the study area. Slope gradient, slope as-
pect, elevation were derived from digital elevation model
(DEM). Land cover layer was derived from 1:20,000 scale
digital vegetation cover maps. For ease of analysis, the
1:20,000 scale superficial and solid geology map covering
the study area was divided into 10 groups based on
chronostratigraphic unit. Other environmental variables
were also divided into seven or eight classes manually,
slope gradient was first broken at 15° because very fewer
landsides were probable on shallower slopes. The PGA
map is extracted from the United States Geology Survey
(U.S.G.S) Shakemap (http://earthquake.usgs.gov/earthquakes/
shakemap) (see Table 2).

Results
There are many free programs for SVM modelling [Chang
and Lin, 2011; Joachims, 1999], which can be downloaded
from the internet, providing all kinds of interfaces to other
software. In this study, LibSVM [Chang and Lin, 2011]
was employed to finish the computation of the SVM
model on Matlab 7.01. The environmental parameters
were derived and rasterized in ArcGIS 9.3. A grid cell size
of 60 × 60 m was adopted to produce the landslide suscep-
tibility maps. The study area was divided into 186,230 grid
cells and each grid consisted of seven layers representing
the environmental parameters.

Training and validation dataset
The two-class SVM requires both positive and negative
data to train the model. The landslide inventory were
randomly divided into two groups: 70% of the total (902
landslides with 1782 grid cells) were used as positive
training samples. As mentioned before, negative training
data was also needed. 1782 negative training points were
generated within 120 m interval in both north and south
direction of the positive points. A validation dataset con-
tains 30% of the total landslides (387 landslides with 738
grid cells) and 738 negative points generated using the
same way as negative training data. A total of 2520 land-
slide points were assigned the value of 1, while the same
amount of negative points were assigned the value of 0.
In SVM modelling, the input of controlling factors

should be as a vector of real numbers. For categorical
attributes, a simple 1 of k coding is recommended to
represent a k-category attribute. For instance, suppose a

http://earthquake.usgs.gov/earthquakes/shakemap
http://earthquake.usgs.gov/earthquakes/shakemap
http://www.radi.ac.cn/yaan/yaanphoto/


Figure 4 Distribution of landslides triggered by the April 20, 2013 Lushan earthquake.

Figure 5 Controlling factors of landslides as input of the SVM modelling (a) Slope gradient; (b) Aspect; (c) Land cover; (d) Distance to
fault; (e) PGA; (f) Elevation; and factors of geology unit can be seen in Figure 2(b).
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Table 2 Controlling parameters and their classes for this study

Controlling parameters Classes

Elevation (m) (1)(min)596-800;(2)800-1200(3)1200-1600;(4)1600-2000;(5)2000-2400;(6)24002872(max)

Slope gradient (°) (1)< 15;(2)15-20;(3)20-25;(4)25-30;(5)30-35;(6)35-40;(7)40-45;(8)> 45

Aspect (1)F;(2)N;(3)NE;(4)E;(5)SE;(6)S;(7)SW;(8)W;(9)NW;

Distance to co-seismic fault (km) (1)< 2;(2)2-4;(3)4-6;(4)6-8;(5)8-10;(6)10-12;(7)12-14;(8)14-16;(9)16-18;(10);18-20

PGA (1)0.24;(2)0.28;(3)0.32;(4)0.36;(5)0.40;(6)0.44;(7)0.48;(8)0.52;(9)0.56;(10);0.58

Land cover (1)Woodland;(2)Wooded Grassland;(3)Closed Shrub land;(4)Open Shrub land;(5)Grassland;(6)Cropland

Geology unit (1)Quaternary(2) Paleogene(3)Cretaceous(4)Jurassic(5)Triassic(6)Devonian(7)Silurian
(8)Ordovician(9)Sinian(10)Proterozoic
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1-dimensional a three-category attribute taking value {a,
b, c}, Just turn it into 3-dimensional numbers such that
a = (1,0,0), b = (0,1,0), c = (0,0,1). If the number of values
in an attribute is not too large, such coding is more
stable than using a single number to represent a cat-
egorical attribute ([Hsu et al., 2003]). Therefore, the
seven environmental parameters were converted into a
vector with 59 bits. Finally, a training dataset containing
3564 grids with 7 input variables were built through
extracting the value of landslide conditioning factors in
every grid.

Cross validation and grid search for SVM parameter
optimization
The performance of the SVM model is depended on the
choice of kernel functions and their parameters especially
the penalty factor C and γ terms. In this study, a grid-
search method with 5-folder cross-validation was used to
locate the optimal values of C and γ [Hsu et al., 2003] as
Figure 6 (a) Success rate curves of the four SVM models; (b) Predictio
follows: (1) Set a pair of (C, γ) values for SVM model; (2)
Randomly divided the training dataset into 5 equal sized
subsets; (3) Use Four subsets of them to train the SVM
model; (4) Validate the trained model using the one
remaining subset; (5) Repeat step three and four for five
times for each of the subset; (6) Calculate the overall
accuracy defined as the percentage of data which are
correctly predicted.
Pairs of (C, γ) were generated through a grid search

with C = 2−8, 2−7, 2−6… 26, 27, 28 and γ = 2−8, 2−7, 2−6…
26, 27, 28. For every pair of (C, γ), we can get an overall
accuracy and the optimal C and γ corresponded to the
highest overall accuracy.
The best value of C for linear was 2 with the overall

accuracy 85.5%. The best C and γ for polynomial were
found 4 and 1 with the overall accuracy 89.6%. In the
case of RBF, the best C and γ were 16 and 1 respectively,
with the overall accuracy 92% while sigmoid used 16 and
8 as the best C and γ.
n rate curves of the four SVM models.
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Comparison of landslide susceptibility maps
ROC curve is one of the useful methods for representing
the quality of deterministic and probabilistic detection,
especially for landslide susceptibility assessment. The char-
acterizes the quality of a forecast system by describing the
system’s ability to anticipate correctly the occurrence or
non-occurrence of predefined event (Yesilnacar and Topal
2005). A true positive (TP) means prediction of a landslide
for a point where a landslide does occur, while a false
positive (FP) is a prediction of a landslide for a stable
point. On the conversely, we can get the true negative
(TN) and false negative (FN). A ROC space is defined
by the false positive rate (FPR, defines as FP/(FP + TN))
Figure 7 Landslide susceptibility mapping using different kernel func
(d) SIGMOID. All the results were classified into five classes: VHS, HS, MS, L
and true positive rate (TPR, defined as TP/(TP + FN))
as x and y axes respectively. The true-positive rate is
also known as sensitivity in biomedicine, or recall in
machine learning. The false-positive rate is also known
as the fall-out and can be calculated as 1- specificity.
The area under the ROC curve (AUC) is an important

measure of the accuracy of the binary classification.
AUC values are typically between 0.5 and 1.0. If this area
is equal to 1.0 then the roc curve consists of two straight
lines, one vertical from (0, 0) to (0, 1) and the next
horizontal from (0, 1) to (1, 1) this test is 100% accurate
because both the sensitivity and specificity are 1.0 and
there was no false positives and no false negatives. On
tions: (a) Linear; (b) Polynomial; (c) RADIAL basis function;
S, and VLS.
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the other hand a test that can’t discriminate between
positive and negative corresponds to an ROC curve that
is the diagonal line from (0, 0) to (1, 0). The AUC for
this line is 0.5.
To evaluate the four landslide susceptibility maps,

success-rate curves and prediction-rate curves were
established, and values of area under curves (AUC) were
also calculated [Hasegawa et al., 2009]. Higher AUC value
indicated a higher capacity of correctly classifying the data
with existing landslides. The success-rate curve was a
measure of goodness of fit for SVM model and training
data. The curve was obtained by comparing the four
landslide susceptibility maps with the training dataset,
(Figure 6a). Results indicated that RBF and polynomial
had the highest AUC values 0.97 and 0.91 respectively,
followed by linear (0.77), while model using sigmoid
kernel function had the lowest AUC values of 0.58.
Nevertheless, the success-rate was not a suitable meas-

ure for the prediction capability of the landslide models
because it was based on the landslide pixels that had
already been used for building the model. To overcome
this, prediction-rate curve and corresponding AUC
values were obtained by comparing the four susceptibility
maps with the validation dataset (Figure 6b). The results
showed that model using polynomial kernel functions had
the highest capacity of prediction with the AUC of 0.86,
slightly better than RBF (0.82) and Linear (0.78). Same
with success-rate curve, sigmoid had the lowest AUC
values.

Discussion
Once the landslide susceptibility models were success-
fully trained in the training phase, they were then used
to calculate the landslide susceptibility indexes (LSI) for
all the pixels. The SVM classification output or result
Table 3 Landslide statistical results by different SVM kernel f

Models
Susceptib

VLS LS M

Linear

%area 8.39 29.83 27

%landslide 0.44 6.67 18

LND 0.05 0.22 0.6

Polynomial

%area 28.01 27.95 13

%landslide 1.27 4.52 8.8

LND 0.05 0.16 0.6

Radial basic

%area 11.16 54.29 10

%landslide 1.83 5.79 5.6

LND 0.16 0.11 0.5

Sigmoid

%area 1.12 7.03 29

%landslide 0.12 0.71 2.8

LND 0.11 0.10 0.1
was the decision values of each pixel. The results were
then converted into raster data. Figure 7 showed the
mapping results for the landslide susceptibility index
(LSI) ranging from0 to 1. 0 indicates no chance and 1 in-
dicates 100% chance for occurrence of landslides.
The LSI values of each grid cell predicted using SVM

with the linear, polynomial, radial basis, and sigmoid
kernel functions were 0.0004-0.9752, 0.0001-0.9999,
0.0007-0.9948, and 0.0047-0.9896 respectively.
A few classification methods, such as natural breaks,

equal intervals and defined interval, were used to distin-
guish the susceptibility classes for trial. Equal intervals
classification was found not to be useful for its emphasis
on the amount of one class value relative to other classes.
Natural breaks are identified that best group similar values
and that maximize the differences between classes and
not useful for comparing multiple maps built from differ-
ent underlying information. A series of specified interval
sizes can be used to define the classes with different
ranges in defined interval methods based on a compre-
hensive consideration of the data distribution. Moreover,
the define interval classification allow comparison of
different maps with similar ranges of attribute value.
The maps with continuous LSI values were then reclas-

sified into five landslide susceptibility categories using the
method of define intervals, i.e. very low susceptibility
(VLS: less than 0.1), low susceptibility (LS: 0.1-0.3),
moderate susceptibility (MS: 0.3-0.5), high susceptibility
(HS: 0.5-0.7), and very high susceptibility (VHS: more
than 0.7) (Figure 7).
The resultant landslide susceptibility maps were also

compared with the landslide inventory. The coverage per-
centages of 5 susceptibility classes and the corresponding
landslide occurrence are shown in Table 3. The results
showed that the landslide frequency ratio (defined as the
unctions

ility class Success
rate

Prediction
rateS HS VHS

.00 23.87 10.91

0.77 0.78.73 38.41 35.75

9 1.61 3.28

.56 12.66 17.83

0.91 0.869 16.71 68.61

6 1.32 3.85

.09 9.01 14.82

0.97 0.827 11.63 75.08

6 1.29 5.07

.56 62.27 0.01

0.58 0.582 96.27 0.08

0 1.55 7.78
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ratio of percentage of landslide occurrence in each class on
that of area) gradually increased from the very low to the
high susceptibility class and then suddenly jumped in very
high susceptibility class.
According to maps, about 20%-30% of the study area

(Linear 34.78%, Polynomial 30.49%, and RBF 23.83%) were
categorized into high and very high susceptible zones
during the Lushan earthquake, with 70%-80% occurrence
of landslides triggered by the earthquake (Linear 74.16%,
Polynomial 85.12%, and RBF 86.71%). However, in maps
with sigmoid function, 62.27% of the area were found to
be highly susceptible to landslides during the earthquake
with almost all of the landslides occurrence.
Most of areas that classified as very high, high and

moderate were concentrated along the seism genic faults,
suffering a high PGA of more than 0.52 g. This may be-
cause earthquake is the trigger of the landslides used for
training model to produce the landslide susceptibility map.

Conclusion
Based on the statistical learning theory, GIS technology,
SVM model, and four types of kernel functions, including
linear function, polynomial function, RBF function, and
sigmoid function, this work has studied the prediction for
spatial distribution of landslides triggered by the April 20,
2013 Lushan earthquake in Sichuan province of China.
From the results of this study, the following conclusions
can be drawn:

(1) Cross validation and grid search was an efficient
tool for parameters optimization. This method
avoided the subjectivity in parameter selection for
the SVM model.

(2) The validation results by ROC method showed that
RBF and polynomial function is the better than
linear and sigmoid for the Lushan earthquake area.
AUC of RBF shows a high accuracy of 97% (0.97) in
case of success rate curves and 82% (0.82) in case of
prediction rate curves, and that of polynomial are
91% (0.91) and 86% (0.86) respectively.

(3) According to the landslide susceptibility index of
each grid, the study area was divided into 5 classes
of landslide susceptibility, namely very low, low,
moderate, high and very high and 4 landslide
susceptibility maps were generated Comparing with
all 1289 landslides (2520 grid cells), The results show
that the landslide frequency ratio gradually increases
from the no to the high susceptibility class.

(4) Most of landslide triggered by the earthquake
happened in high and very high susceptible zones,
which were concentrated along the seism genic
faults with a high PGA;

(5) The SVM modelling related to the Lushan
earthquake landslides can be applied to landslide
disaster prediction in other regions with potential
seismic risks given appropriate kernel functions and
model parameters
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