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How sample size can effect landslide size
distribution
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Abstract

Background: Landslide size distribution is widely found to obey a negative power law with a rollover in the smaller
size, and has been exploited by many researchers to inspect landside physics or to assess landslide erosion and landslide
hazard. Yet, sample size has effect on the statistics of landslide size even though we manage to avoid complications
associated with landslide datasets and statistical treatments.

Results: In this paper, a series of stochastic simulations were implemented to explicitly and systematically quantify the
effect of sample size. The results show that, the errors of parameters estimated based on small sample size can be
considerably large. For a sample size of 100, the relative error of the estimated landslide erosion rate that has a probability
of 50 % can approach 100 %. In addition, small sample size also obscures the statistical significance of the variances in
parameters between different subsets of the same dataset. Although inconsistency was found regarding how the power
exponent varies with rainfall intensity, numerical results suggest that the variance observed in a dataset with a small
sample size may be not statistically significant.

Conclusions: This paper not only reveals the potential effect of sample size on exploiting landslide size distribution but
also presents procedures for quantifying this issue in future studies.
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Background
The frequency of landslide is widely observed to
decrease as a power law with the increase of size after a
maximum value (Stark and Hovius 2001; Malamud et al.
2004; Brunetti et al. 2009). This partial power law behav-
ior is unique because it is represented by not only a
heavy tail as observed in many phenomena (Caers et al.
1999; Cheng 2008; Pinto et al. 2012; Kolyukhin and
Tveranger, 2014), but also a rollover in the smaller size.
The exponent of the power law tail (γ) and the rollover
(R) are therefore the two most characteristic parameters.
On one hand, landslide size distribution is crucial for
quantitative analysis of landslide hazard (Hungr et al.
1999; Guzzetti et al. 2005) and earth surface processes

(Hovius et al. 1997; Larsen and Montgomery 2012). On
the other hand, the emergence of the power law tail and
the rollover are mysteries that still lack widely accepted
physical explanations (Pelletier et al. 1997; Katz and
Aharonov 2006; Stark and Guzzetti 2009; Lehmann and
Or 2012; Frattini and Crosta 2013; Alvioli et al. 2014; Li
et al. 2014 and references therein). Therefore, landslide
size distribution has been exploited by many researchers
either to inspect the physics of landslides or to assess
landslide erosion and landslide hazard.
The statistics of landslide size could be obscured by

complications associated with landslide datasets and
statistical treatments in the first place. The following
strategies had been adopted to mitigate these compli-
cations: 1) using event-based rather than historical
landslide datasets (Malamud et al. 2004; Ghosh et al.
2012); 2) using the same dataset prepared by the
same author instead of datasets prepared by different
authors (Iwahashi et al. 2003; Guzzetti et al. 2008;
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Chen 2009); and 3) using the maximum likelihood
estimation (MLE) rather than linear regression to
estimate both the power exponent and the rollover
(Fiorucci et al. 2011; Ghosh et al. 2012). Nevertheless,
even without these complications, limited sample size
can also cast a shadow on the statistics of landslide size.
Sample size effect is in fact a problem faced by many disci-
plines (Lazzeroni and Ray 2012). The error on the esti-
mated scaling parameter of power law distributions from
sample size effects has been investigated (Clauset et al.
2009). Yet, the potential effect of sample size on the statis-
tics of landslide size has not been explicitly addressed. The
fact that small differences in parameters of the size fre-
quency relationship may produce huge mismatches in the
derived landslide erosion rates (Korup et al. 2012) suggests
the significance of this issue in some respects. This paper
aims to quantitatively inspect the possible effect of sample
size on exploiting landslide size distribution. We will focus
on the landslide area distribution because so far no satis-
factory distribution function for landslide volume has
been proposed and most empirical datasets do not have
landslide volume data.

Methods
Landslide area distribution
The widely adopted double Pareto function (Stark and
Hovius 2001) and Inverse Gamma function (Malamud
et al. 2004) were used to characterize the landslide area
distributions. And parameters of the two distributions
were estimated by the maximum likelihood estimation
(MLE). It is inconclusive whether the two functions are
mathematically and physically eligible to represent the
landslide area distributions in the real world, but they are
a practical choice since there are capable of characterizing
both the power law tail and the rollover of landslide area
distribution. To examine the assumption that landslide
size distribution is characterized by a power law tail goes
beyond the topic of this paper, we therefore did not test
that hypothesis. For the same reason, we did not examine
whether log-normal function (ten Brink et al. 2009;
Mackey and Roering 2011), logarithmic function (Issler
et al. 2005; Che et al. 2011) or exponential function
(Montgomery et al. 1998) is an alternative to characterize
the empirical data of landslide size. Analytical distribution
function for landslide area yielded by maximizing Tsallis
entropy (Chen et al. 2011) were not used as it is accom-
panied by complications (Li et al. 2012).
The expression of the double Pareto distribution is:

pdp Að Þ ¼ β

t 1−δð Þ
1þ m=tð Þ−α½ �β=α
1þ A=tð Þ−α½ �1þβ=α

A=tð Þ−α−1 ð1Þ

where

δ ¼ 1þ m=tð Þ−α
1þ c=tð Þ−α

� �β=α
ð2Þ

A is landslide area, pdp(A) is probability density of
landslide area, α, β, and t are constants, while c and m
are two cutoffs define the interval within which the
normalization condition satisfies. This function can be
approximated by a negative power law (tail) with an ex-
ponent of -α-1 for large size events and a positive power
law with an exponent of β-1 for small size events sepa-
rated by a maximum (rollover). With the maximum
probability density, we have the rollover at area value:

RA
dp ¼ exp

1
α

ln β−1ð Þ− ln αþ 1ð Þð Þ þ lnt

� �
ð3Þ

We therefore do not use t as the “crossover” of pdp(A)
as suggested by Stark and Hovius (2001), but use the
area with maximum probability density as the “rollover”.
We chose 1 and 1010 as the two cutoffs to ensure all the
landslide area values in empirical datasets fall into this
scope and found similar choices (e.g., 1 and 108) get al-
most the same estimates of parameters.
The expression of the Inverse Gamma distribution is:

pig Að Þ ¼ 1
aΓ ρð Þ

a
A−s

h iρþ1
exp −

a
A−s

h i
ð4Þ

where A is landslide area, pig(A) is probability density of
landslide area, Γ(ρ) is the gamma function of ρ, while ρ,
a, and s are constants. The normalization condition is
satisfied within [s, +∞). This function can be approxi-
mated by a negative power law (tail) with an exponent
of -ρ-1 for large size events and an exponential function
for small size events separated by a maximum (rollover).
With the maximum probability density, we have the roll-
over at area value:

RA
ig ¼

a
ρþ 1

þ s ð5Þ

Average landslide volume
The landslide volume (V) is found to relate to landside
area (A) with a scaling exponent τ and an intercept ε
(Guzzetti et al. 2009; Larsen et al. 2010; Klar et al. 2011)
such that:

V Að Þ ¼ εAτ ð6Þ
Then, an average landslide volume (Va) can be defined

and calculated by:

V a ¼
Z

V Að Þp Að ÞdA ¼
Z

εAτp Að ÞdA ð7Þ

where p(A) is either pdp(A) or pig(A) in our study, and
the range of integration corresponds to the interval
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within which the normalization condition satisfies. The
average volume is important because it leads to the
amount of landslide erosion and further the landslide
erosion rate if the total landslide number is given. In
other words, Eq. (6) makes it possible to inspect how the
parameter estimation of landslide area distribution
affects the estimation of landslide erosion rate. In our
study, the relationship V = 2.59A1.05 deduced from the
Fujian historical landslide inventory (Li et al. 2014) is
used, and Eq. (y6) is calculated numerically.

Stochastic simulation
A straightforward procedure is designed to inspect the
effect of sample size on the reliability of the parameter
estimation of landslide size distribution. It is assumed
that: 1) the theoretical distribution of landslide size with
respect to a certain event within a certain area is
constrained by physical factors and is therefore predeter-
mined; 2) the number of landslides occurring in a
certain event within a certain area is finite; and 3) the
size of each individual occurred landslide is stochastic.
So, we firstly introduce a predefined theoretical distribu-
tion of landslide area, and then draw N values of area
from the theoretical distribution using Monte Carlo
simulation, where N is the sample size. Values of sample
size span from 100 to 10,000 and are logarithmic spaced.
With regard to each sample size, 1,000 Monte Carlo
samples are produced to reveal the stochasticity of the
estimated parameters. If the sample size is large enough,
the estimated parameters of the 1,000 Monte Carlo sam-
ples are expected to have a mean value similar to the
parameters of the theoretical distribution and a low
standard deviation. On the contrary, if the sample size is
small, a mean value far different to the theoretical value
and a high standard deviation are expected.
Similarly, we also use a straightforward way to inspect

how the sample size influences the statistical significance
of the comparison of the parameters of landslide size
distribution between different subsets. Firstly, with re-
gard to each sample size, the sample with parameters
most similar to the theoretical values is picked out from
the formerly produced 1,000 Monte Carlo samples as
the test sample for this sample size. Then, for each sam-
ple size, the corresponding test sample is randomly sub-
divided into two subsets according to a subdividing
ratio. And six subdividing ratios, namely 1:1, 2:1, 3:1,
4:1, 5:1, and 6:1, are used to inspect the effect of subdiv-
iding ratio as well. For each test sample, the random
subdivision is repeated 1,000 times for each subdividing
ratio. If we take “the observed differences in parameters
between the two subsets are attributed to random pro-
cesses” as the null hypothesis, the region of rejection
and also the region of acceptance for a certain signifi-
cance level (e.g., 0.05) can be estimated according to the

statistics of the variances in parameters observed in the
1,000 random trials.

Landslide dataset
Heavy rainfall struck Fujian in the mid-to-late June, 2010
and induced large numbers of landslides. The Xiayang-
Wangtai (XW as an abbreviation) area, for which SPOT
images with 2.5 m spatial resolution taken shortly after
this rainfall event are available (Fig. 1), suffered greatly
from this rainfall event. Rainfall records show that the cu-
mulative rainfall in the XW area in this period exceeds
300 mm and approaches 600 mm (Fig. 1a). Landslides in
the study area were manually mapped on the SPOT im-
ages in a GIS platform. The bright brownish area repre-
senting both the failure and the deposition zones were
visually delineated as fresh landslide areas (Fig. 1b). Field
reconnaissance had helped to link real landslide scenarios
with features on the SPOT images (Fig. 1c, d, e). In
addition, the topography was inspected through a digital
elevation model (DEM) with 5 m spatial resolution to
support the mapping. The brownish area in gullies that
represents the traces of debris flows and floods were not
delineated. As seen during field surveys, shallow earth
slides account for most of the landslides in the XW area in
this event. Totally 12,524 landslides were identified in the
study area which means a density of about 43 landslides
per square kilometer. We will refer to this inventory as
“XW dataset”.
The high resolution of the SPOT images and DEM im-

plies that this event-based landslide dataset ought to be
substantially complete for landslides with area larger
than 25 m2 regarding this rainfall event within this XW
area. In addition, only one interpreter was involved in
the mapping procedures. This suggests that potential er-
rors due to the diversity of the skills and experience of
the interpreters are avoided in the following statistical
analysis. Two subsets of the XW dataset, namely R1 and
R2, were produced according to the 450 mm cumulative
rainfall isoline as shown in Fig. 1a. The probability distri-
butions of landslide area fitted to the empirical datasets
using MLE are shown in Fig. 2. The statistical parame-
ters, including the estimated exponents of the power law
tail (γ) and the estimated rollovers (R), are presented in
Table 1. In the following analysis, we will take the fitted
landslide size distributions of the XW dataset as the pre-
defined theoretical distributions for the Monte Carlo
simulations, and will also test whether the observed vari-
ances in parameters between the R1 and R2 subsets is
statistically significant or not.

Results
The reliability of estimating parameters
The mean and standard deviation of the estimated pa-
rameters (γ and R) with respect to each sample size are
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presented in Fig. 3. For both the double Pareto distribu-
tion and the Inverse Gamma distribution, as sample size
gets smaller, the mean of the estimated parameters gets
more deviated from the theoretical value (Fig. 3a, b) while
the standard deviation gets larger (Fig. 3c, d). In addition,
the probability that the estimated value has a relative error
less than 5 % is calculated to quantify the performance of
parameter estimation. Not surprisingly, for both the
exponent and the rollover, this probability decreases

dramatically as sample size gets smaller (Fig. 3e, f). Com-
pared with the Inverse Gamma distribution, the estimated
exponents using the double Pareto distribution have lower
standard deviations. Therefore, the performance of the
double Pareto distribution on estimating the exponent is
relatively better than the Inverse Gamma distribution
(Fig. 3e). On the contrary, on estimating the rollover, the
performance of the Inverse Gamma distribution is slightly
better than the double Pareto distribution (Fig. 3f).

Fig. 1 a SPOT images that cover the Xiayang-Wangtai (XW) area after the rainfall event in mid-to-late June, 2010 is shown; Lines labeled with
numbers indicate cumulative rainfall (mm) in this event. b Some mapped landslides around the Caiyuan Village are illustrated with four typical
landslides (LSs) marked. c, d, e Field views of the four marked landslides in (b). On June 18, 2010, LS4 had more than 20 persons killed
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If we take 95 % as a rule of thumb (Fig. 3e, f ), the
minimum sample size required for reliable parameter es-
timation can be inferred. However, finding a threshold
universally applicable is unrealistic. It is related to not
only the distribution function but also the theoretical
parameters. Numerical experiments show that larger
theoretical parameters (absolute values) require larger
sample size to guarantee a high probability of low
relative error. Nevertheless, Fig. 3 shows that 6,000 is a
roughly safe choice for most landslide datasets. In view
of this standard, utilizations of the parameters esti-
mated based on small sample size, for example less
than 1,000 (Fiorucci et al. 2011; Ghosh et al. 2012;
Regmi et al. 2014), especially for quantitative use (Larsen
and Montgomery 2012; Tsai et al. 2013), should be

cautious. We will specifically inspect how sample size
affects the reliability of landslide erosion estimates in the
discussion.
The shape of landslide size distribution is defined by

all the parameters, although the power law tail and the
rollover are the two most characteristic features. As both
double Pareto function and Inverse Gamma function
have three variables, a good estimation of one parameter
cannot guarantee a good estimation of another param-
eter. Thus, it is necessary to inspect the correlations
between the estimated parameters besides inspecting
them separately. The correlations between the estimated
power exponents, rollovers and average volumes for
sample size 10,000 and 1,000 are presented in Fig. 4.
Generally, larger power exponents (absolute values)
come with larger rollovers, while the average volume is
inversely proportional to the power exponent (absolute
value) and the rollover. Although these trends are
distinct, scattering is also obvious in the plots. The less
scattered results of larger sample size suggests more
reliable estimates.

The statistical significance of comparing parameters
The regions for accepting the null hypothesis that “the
differences in parameters between two different subsets
of the same landslide dataset are derived from stochastic
processes” are shown in Figs. 5 and 6 for γ and R, re-
spectively. The significance level is 0.05, and the differ-
ences in parameters are the results of the parameters of
the subsets with larger sample size subtracting that of
the subsets with smaller sample size. Narrower region of

Fig. 2 Probability distributions of landslide area fitted to the XW dataset using the maximum likelihood estimation are shown. The scattered open
squares and circles showing the empirical data represent the probability densities estimated based on histogram with logarithmic bins. Numerical
values indicate the scaling exponents of the fitted power law tails. a The entire XW dataset. b The two subsets of the XW dataset identified
according to cumulative rainfall

Table 1 Statistical characteristics of landslide dataset and subsets

Dataseta Nb Areac (m2) Double Pareto Inverse Gamma

Min Max Mean γd Re (m2) γ R (m2)

XW 12,524 8 48,846 695 −2.26 124.63 −2.36 121.57

R1 6,297 8 48,846 1,021 −2.16 133.82 −2.18 137.85

R2 6,227 18 10,224 365 −2.81 136.33 −3.27 128.49
aDataset: “XW” indicates the entire XW dataset, “R1” and “R2” indicate subsets
of the XW dataset characterized by a cumulative rainfall of lower and higher
than 450 mm, respectively
bN: number of landslides in a dataset (sample size)
cArea: “Min”, “Max” and “Mean” indicate the minimum, maximum and mean
landslide area of a dataset respectively
dγ: scaling exponent of the power law tail of the landslide area probability
distribution fitted using the maximum likelihood method
eR: rollover of the landslide area probability distribution fitted using the
maximum likelihood method
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acceptance means we have wider region of rejection in
which we are confident in attributing the observed vari-
ances in parameters to physical constraints other than
random processes.
It is shown that, regardless of distribution function, for

both γ and R, as sample size gets smaller or subdividing
ratio gets larger, the region of acceptance gets wider
(worse). It means smaller sample size and larger subdiv-
iding ratio expect larger differences in parameters to be
observed for the sake of statistical significance. It also
shows that the double Pareto distribution performs bet-
ter on estimating the exponent (Fig. 5) while the Inverse
Gamma distribution performs slightly better on estimat-
ing the rollover (Fig. 6). The regions of acceptance go
beyond the range of figures for sample sizes less 250 if
the subdividing ratio is large. This is because small sam-
ple size together with large subdividing ratio will yield
unrealistic wide regions of acceptance. For example, with
regard to a sample size of 100 and a subdividing ratio of
5, the regions of acceptance for γ estimated using the
double Pareto distribution and the Inverse Gamma dis-
tribution are [−14.69, 13.75] and [−18.22, 15.24], respect-
ively. Therefore, comparing the parameters of different
subsets of a landslide dataset with an extreme small

sample size, for instance less than 100 (Iwahashi et al.
2003), is practically statistically meaningless.
Numerical experiments show that, for the same sam-

ple size and subdividing ratio, larger parameters (abso-
lute values) of the “mother dataset” yields wider regions
of acceptance. Therefore, it is hard to find a universal
standard for statistical significance. It is also hard to tell
whether some published variances in parameters be-
tween different subsets is statistical significant or not,
because either the MLE is not used (Chen 2009) or the
information is not sufficient (Guzzetti et al. 2008).
Nevertheless, test of statistical significance is highly
recommended prior to physical interpretations of the
variation of landslide size distribution between different
subsets, especially for those with small sample size
(Santangelo et al. 2013; Guns and Vanacker 2014). In the
discussion, we will show that small sample size can cast
a shadow on interpreting the physical constraints on
landslide size distribution.

Discussion
The proposed statistical procedures in this paper is of
potential use for exploiting landslide size distribution, in-
cluding such as estimating landslide erosion rate, assessing

Fig. 3 The statistical characteristics of the estimated power exponents (γ) and rollovers (R) regarding different sample size are presented. a Mean
of γ. b Mean of R. c Standard deviation of γ. d Standard deviation of R. e The probability that the estimated γ has a relative error less than 5 %.
f The probability that the estimated R has a relative error less than 5 %. Horizontal lines in (a) and (b) indicate the theoretical values
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Fig. 4 The correlations between the estimated power exponents, rollovers and average volumes for sample size 10,000 (a, c, e) and 1,000 (b, d, f)
are presented. Linear fits of scattered points are also provided
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landslide hazard and inspecting the physics of landslides.
In this section, the effect of sample size on estimating
landslide erosion rate is specifically discussed, and an
example is presented to show that sample size can
affect the confidence in attributing the variation of
landslide size distribution to the spatial heterogeneity
of rainfall intensity.

The estimation of landslide erosion rate
The statistical characteristics of the estimated average
volume (Va) with respect to each sample size are pre-
sented in Fig. 7. Similar to the power exponent and roll-
over, as sample size gets smaller, the mean of the
estimated Va gets more deviated from the theoretical
value (Fig. 7a) while the standard deviation gets larger
(Fig. 7b). However, the potential error of volume estima-
tion is more significant compared with that of the power
exponent and rollover. This can be seen from the prob-
ability that the estimated value has a relative error less
than 5 % (Fig. 7c). A sample size of 6,000 can only guar-
antee a probability of about 50 % that the estimated Va

has a relative error less than 5 %. The relative error of
the estimated Va that has a probability equal to 50 % is

also calculated (Fig. 7d). It shows that, for the double
Pareto distribution and Inverse Gamma distribution re-
spectively, when sample size gets around 150 and 350,
there will be half a chance that the estimated Va has a
relative error of 50 %. The double Pareto distribution
performs relatively better on estimating the average vol-
ume than the Inverse Gamma distribution. However,
even for the double Pareto distribution, there will be a
probability of 50 % that the estimated Va has a relative
error near 100 % if the sample size is 100 (Fig. 7d). As
landslide erosion rate is positively proportional to aver-
age landslide volume, the error of estimating Va will dir-
ectly bring the same error to the estimation of landslide
erosion rate. In similar way, the potential error of asses-
sing landslide hazard caused by insufficient sample size
can be estimated, given the relationship between land-
slide size and landslide intensity is provided.

The variation of landslide size distribution with rainfall
intensity
The significance of the observed variances in γ and R be-
tween the two subsets (R1 and R2) of the XW dataset
(Table 1) had been tested. We randomly subdivide the

Fig. 5 The regions of acceptance for the null hypothesis that “the observed differences in power exponent (γ) between two different subsets of
the same dataset is derived from random processes” at a significance level of 0.05 are shown. a, b, c, d, e and f present the results for
subdividing ratio 1:1, 2:1, 3:1, 4:1, 5:1 and 6:1, respectively. Please note that some of the regions of acceptance for sample sizes less than 250 go
beyond the range of this figure, because small sample size together with large subdividing ratio will yield unrealistic wide regions of acceptance
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Fig. 6 The regions of acceptance for the null hypothesis that “the observed differences in rollover (R) between two different subsets of the same
dataset is derived from random processes” at a significance level of 0.05 are shown. a, b, c, d, e and f present the results for subdividing ratio 1:1,
2:1, 3:1, 4:1, 5:1 and 6:1, respectively. Please note that the lower bounds of region of acceptance for sample sizes near 100 go beyond the range
of this picture (less than −100) when the subdividing ratio is 5:1 or 6:1

Fig. 7 The statistical characteristics of the estimated average landslide volume (Va) regarding different sample size are presented. a Mean of Va.
b Standard deviation of Va. c The probability that the estimated Va has a relative error less than 5 %. d The relative error of the estimated Va that
has a probability of 50 %. Horizontal lines in (a) indicate the theoretical values
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12,524 landslides into two subsets with 6,297 and 6,227
landslides respectively for 1,000 times. The results show
that, all the differences in parameters observed between
the R1 and R2 subsets is statistical significant at a signifi-
cant level of 0.05, except for the difference in rollover es-
timated using the double Pareto distribution (−2.51),
which has a significant level of about 0.21. Therefore,
from the conservative point of view, we attribute the
observed variances in rollover to random processes
but suggest a physical explanation for the variances in
power exponent.
We find that larger cumulative rainfall produces a

steeper power law tail of the landslide area distribution
(Fig. 2b). This is opposite to the previously reported
result that the power law tail becomes flatter with an
increase of the cumulative rainfall (Chen 2009). The
variation of power exponent with rainfall intensity is
essential because it concerns the problem whether
increased rainfall intensity will increase the relative pro-
portion of small size landslides or large size landslides.
The explanation of this disagreement goes beyond the
scope of this paper. Instead, we suggest a test of signifi-
cance prior to physical interpretation. However, the stat-
istical significance of the result published by Chen
(2009) cannot be exactly told since the MLE was not
used. Nevertheless, a variance of power exponent 0.27 is
obtained by subdividing a landslide dataset with a sam-
ple size less than 600. This result falls into the region of
acceptance according to our numerical experiments
(Fig. 4). Therefore, from a statistical point of view,
there may be no adequate confidence to exclude the
possibility that the variance of power exponent with
rainfall intensity observed in Chen (2009) is due to
random processes.

Conclusions
A series of numerical experiments were implemented in
this paper to systematically quantify the effect of sample
size on exploiting landslide area distribution. The results
show that, as sample size gets smaller, both the reliability
of the parameter estimation and the statistical signifi-
cance of the variances in parameters observed between
different subsets get worse. Therefore, quantitative ana-
lysis of landslide hazard and land surface erosion based
on the statistics of landslide dataset with small sample
size may be accompanied by considerable errors. Specif-
ically, with a sample size of 100, the relative error of the
estimated landslide erosion rate that has a probability of
50 % can approach 100 %. Furthermore, inconsistency
was found regarding how the power exponent of land-
slide area distribution varies with rainfall intensity. Our
numerical results suggest that the variance observed in a
dataset with a small sample size may be not statistically
significant. Although this study had focused on landslide

area distribution and adopted the double Pareto distribu-
tion and the Inverse Gamma distribution, the presented
procedures can be also used to quantify the potential
effects of sample size regarding landslide volume distribu-
tion and other distribution functions.
Nevertheless, because the results of numerical simula-

tions are affected by the statistical characteristics of the
concerned landslide dataset, it is hard to find universally
applicable criteria for adequate (large enough) sample
size. A design for testing the potential effects of sample
size on landslide size statistics but not a rule of thumb
was proposed in this paper. It must be emphasized that,
only larger sample size cannot guarantee reliable statis-
tical results, a landslide dataset with physically represen-
tative sample distribution is usually a prerequisite.

Acknowledgments
This research was supported by National Natural Science Foundation of
China (NO. 41525010, 41272354 and 41472282) and Research Foundation for
Youth Scholars of IGSNRR, CAS. The authors also wish to thank Fujian Centre
for Geological Environment Monitoring for SOPT images and relevant data.
Mr. Zhiwei Wang is particularly appreciated for helping to prepare the
landslide dataset in the Xiayang-Wangtai area.

Authors’ contributions
LP designed the study, carried out the statistical analysis and drafted the
manuscript. HX conceived of the study, and participated in its design and
coordination and helped to draft the manuscript. YM participated in the
statistical analysis. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 2 July 2016 Accepted: 4 October 2016

References
Alvioli, M., F. Guzzetti, and M. Rossi. 2014. Scaling properties of rainfall-induced

landslides predicted by a physically based model. Geomorphology 213: 38–47.
Brunetti, M.T., F. Guzzetti, and M. Rossi. 2009. Probability distributions of landslide

volumes. Nonlinear Proc Geophys 16(2): 179–188.
Caers, J., J. Beirlant, and M.A. Maes. 1999. Statistics for modelling heavy tailed distributions

in geology: Part I. Methodology. Mathematical Geoscience 31(4): 391–410.
Che, V.B., M. Kervyn, G.G.J. Ernst, P. Trefois, S. Ayonghe, P. Jacobs, E. van Ranst,

and C.E. Suh. 2011. Systematic documentation of landslide events in Limbe
area (Mt Cameroon Volcano, SW Cameroon): geometry, controlling, and
triggering factors. Natural Hazards 59(1): 47–74.

Chen, C.Y. 2009. Sedimentary impacts from landslides in the Tachia River Basin,
Taiwan. Geomorphology 105(3–4): 355–365.

Chen, C.C., L. Telesca, C.T. Lee, and Y.S. Su. 2011. Statistical physics of landslides:
New paradigm. EPL 95(4): 49001.

Cheng, Q.M. 2008. Non-linear theory and power-Law models for information
integration and mineral resources quantitative assessments. Mathematical
Geoscience 40: 503–532.

Clauset, A., C.R. Shalizi, and M.E.J. Newman. 2009. Power-law distributions in
empirical data. SIAM Review 51(4): 661–703.

Fiorucci, F., M. Cardinali, R. Carlà, M. Rossi, A.C. Mondini, L. Santurri, F. Ardizzone,
and F. Guzzetti. 2011. Seasonal landslide mapping and estimation of
landslide mobilization rates using aerial and satellite images. Geomorphology
129(1–2): 59–70.

Frattini, P., and G.B. Crosta. 2013. The role of material properties and landscape
morphology on landslide size distributions. Earth and Planetary Science Letters
361: 310–319.

Ghosh, S., C.J. van Westen, E.J.M. Carranza, V.G. Jetten, M. Cardinali, M. Rossi, and
F. Guzzetti. 2012. Generating event-based landslide maps in a data-scarce
Himalayan environment for estimating temporal and magnitude
probabilities. Engineering Geology 128: 49–62.

Li et al. Geoenvironmental Disasters  (2016) 3:18 Page 10 of 11



Guns, M., and V. Vanacker. 2014. Shifts in landslide frequency–area distribution
after forest conversion in the tropical Andes. Anthropocene 6: 75–85.

Guzzetti, F., P. Reichenbach, M. Cardinali, M. Galli, and F. Ardizzone. 2005. Probabilistic
landslide hazard assessment at the basin scale. Geomorphology 72(1–4): 272–299.

Guzzetti, F., F. Ardizzone, M. Cardinali, M. Galli, P. Reichenbach, and M. Rossi. 2008.
Distribution of landslides in the Upper Tiber River basin, central Italy.
Geomorphology 96(1–2): 105–122.

Guzzetti, F., F. Ardizzone, M. Cardinali, M. Rossi, and D. Valigi. 2009. Landslide
volumes and landslide mobilization rates in Umbria, central Italy. Earth and
Planetary Science Letters 279(3–4): 222–229.

Hovius, N., C.P. Stark, and P.A. Allen. 1997. Sediment flux from a mountain belt
derived by landslide mapping. Geology 25(3): 231–234.

Hungr, O., S.G. Evans, and J. Hazzard. 1999. Magnitude and frequency of rock falls
and rock slides along the main transportation corridors of southwestern
British Columbia. Canadian Geotechnical Journal 36(2): 224–238.

Issler, D., F.V. De Blasio, A. Elverhøi, P. Bryn, and R. Lien. 2005. Scaling behaviour of
clay-rich submarine debris flows. Mar Petrol Geol 22(1–2): 187–194.

Iwahashi, J., S. Watanabe, and T. Furuya. 2003. Mean slope-angle frequency
distribution and size frequency distribution of landslide masses in
Higashikubiki area, Japan. Geomorphology 50(4): 349–364.

Katz, O., and E. Aharonov. 2006. Landslides in vibrating sand box: What controls
types of slope failure and frequency magnitude relations? Earth and
Planetary Science Letters 247(3–4): 280–294.

Klar, A., E. Aharonov, B. Kalderon-Asael, and O. Katz. 2011. Analytical and
observational relations between landslide volume and surface area. Journal
of Geophysical Research 116(F02), F02001.

Kolyukhin, D., and J. Tveranger. 2014. Statistical analysis of fracture-length
distribution sampled under the truncation and censoring effects.
Mathematical Geoscience 46: 733–746.

Korup, O., T. Görüm, and Y. Hayakawa. 2012. Without power? Landslide
inventories in the face of climate change. Earth Surf Proc Land 37(1): 92–99.

Larsen, I.J., and D.R. Montgomery. 2012. Landslide erosion coupled to tectonics
and river incision. Nature Geoscience 5(7): 468–473.

Larsen, I.J., D.R. Montgomery, and O. Korup. 2010. Landslide erosion controlled by
hillslope material. Nature Geoscience 3(4): 247–251.

Lazzeroni, L.C., and A. Ray. 2012. The cost of large numbers of hypothesis tests
on power, effect size and sample size. Molecular Psychiatry 17(1): 108–114.

Lehmann, P., and D. Or. 2012. Hydromechanical triggering of landslides: From
progressive local failures to mass release.Water Resources Research 48(3), W03535.

Li, L.P., H.X. Lan, and Y.M. Wu. 2012. Comment on “Statistical physics of landslides:
New paradigm” by Chen C.-c. et al. EPL 100(2): 29001.

Li, L.P., H.X. Lan, and Y.M. Wu. 2014. The volume-to-surface-area ratio constrains the
rollover of the power law distribution for landslide size. Eur Phys J Plus 129(5): 89.

Mackey, B.H., and J.J. Roering. 2011. Sediment yield, spatial characteristics, and
the long-term evolution of active earthflows determined from airborne
LiDAR and historical aerial photographs, Eel River, California. Geological
Society of America Bulletin 123(7–8): 1560–1576.

Malamud, B.D., D.L. Turcotte, F. Guzzetti, and P. Reichenbach. 2004. Landslide
inventories and their statistical properties. Earth Surf Proc Land 29(6): 687–711.

Montgomery, D.R., K. Sullivan, and H.M. Greenberg. 1998. Regional test of a
model for shallow landsliding. Hydrological Processes 12(6): 943–955.

Pelletier, J.D., B.D. Malamud, T. Blodgett, and D.L. Turcotte. 1997. Scale-invariance
of soil moisture variability and its implications for the frequency–size
distribution of landslides. Engineering Geology 48(3–4): 255–268.

Pinto, C.M.A., A. Mendes Lopes, and J.A. Tenreiro Machado. 2012. A review of power
laws in real life phenomena. Commun Nonlinear Sci Numer Simuln 17(9): 3558–3578.

Regmi, N.R., J.R. Giardino, and J.D. Vitek. 2014. Characteristics of landslides in
western Colorado, USA. Landslides 11(4): 589–603.

Santangelo, M., D. Gioia, M. Cardinali, F. Guzzetti, and M. Schiattarella. 2013.
Interplay between mass movement and fluvial network organization: An
example from southern Apennines, Italy. Geomorphology 188: 54–67.

Stark, C.P., and F. Guzzetti. 2009. Landslide rupture and the probability distribution of
mobilized debris volumes. Journal of Geophysical Research 114: F00A02.

Stark, C.P., and N. Hovius. 2001. The characterization of landslide size distributions.
Geophysical Research Letters 28(6): 1091–1094.

ten Brink, U.S., R. Barkan, B.D. Andrews, and J.D. Chaytor. 2009. Size distributions
and failure initiation of submarine and subaerial landslides. Earth and
Planetary Science Letters 287(1–2): 31–42.

Tsai, Z.X., G.J.Y. You, H.Y. Lee, and Y.J. Chiu. 2013. Modeling the sediment yield
from landslides in the Shihmen Reservoir watershed, Taiwan. Earth Surf Proc
Land 38(7): 661–674.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Li et al. Geoenvironmental Disasters  (2016) 3:18 Page 11 of 11


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Landslide area distribution
	Average landslide volume
	Stochastic simulation

	Landslide dataset
	Results
	The reliability of estimating parameters
	The statistical significance of comparing parameters

	Discussion
	The estimation of landslide erosion rate
	The variation of landslide size distribution with rainfall intensity

	Conclusions
	Acknowledgments
	Authors’ contributions
	Competing interests
	References

