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Abstract

Alborz mountains

This paper expands the previous efforts by other researchers to present a quantitative and deterministic approach
for terrain analysis. This study evaluates both spatial and temporal factors contributing landslides utilizing Light
Detection and Ranging (LIDAR) point clouds in conjunction with the frequency ratio model (PFR) than has
previously been used in the Alborz Mountains. The study area is Marzan Abad of the Alborz Mountain in Iran.

The significance of this study is the performance of a high-resolution digital elevation model (DEM) derived from
LiDAR point clouds in order to provide detailed information in improving landslide susceptibility evaluation.

This study discusses how we improve the quality of landslide susceptibility evaluation. We apply the PFR model

to consider the effect of landslide-related factors associated with Google Earth’s high-resolution images and field
observations. The LiDAR point cloud data and GIS-based analysis have allowed performing high quality ways

of landslide hazard assessments using inventory dataset as compared to previous studies. We contributed an
improved landslide inventory map of the Mazandaran Province. We used image elements interpretation from the
available ASTER DEM (30 m), LIDAR-DEM (5 m), and the Google Earth high spatial resolution images in conjunction
with the field observations. This study evaluates factors such as geology, geomorphology, landuse, soil, slope,
and distance from roads and drainage to represent, manipulate, and analyze factors. Also, we evaluated the
performance success of the rate curve of landslides susceptibility. The results have indicated an improved
landslide susceptibility map from LiDAR-derived DEMs implementing the PFR model with 92.59% of accuracy
performance as compared to the existing data and previous studies in the same region. Furthermore, this study reveals
that all considering factors have relatively positive effects on the landslides susceptibility mapping in the study,
however, the most effective factor on the landslide occurrence is the lithology with 13.7%.

Keywords: Landslide susceptibility, LIDAR, ASTER, GIS, Google Earth high-resolution images, Probabilistic frequency ratio,

Background

Landslides are one of the most common deformation
scenarios in the real-world environment. Almost
every year catastrophic landslides cause loss of lives
and result in billions of dollars in property damage
around the world. Landslide-prone areas reconnais-
sance is playing a major role for decision makers to
prepare a loss reduction plan. Identification and
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spatial distribution of landslides require knowledge of not
only geologic and geomorphic processes, but also of
state-of-the-art technologies including geographical
information system (GIS). Moreover, LiDAR and
Unmanned Airborne Vehicle (UAV) techniques have
become excellent tools to improve landslide recogni-
tion processes for mapping (Haugerud et al. 2003;
Eeckhaut and Van, 2007; Liu et al. 2012; Pirasteh and Li
2016).

Numerous research have been attempted on landslide
hazards to study slope instability hazards mapping
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(Carrara et al. 1991; Carrara et al. 1999; Guzzetti et al.
1999; Barredo et al. 2000; Pack and Tarboton 2004; Guz-
zetti et al.2005; Roering et al. 2009; Pirasteh et al. 2011;
Su et al. 2015). Also, some researchers applied determin-
istic models for landslide susceptibility mapping and
modelling (Binaghi et al. 1999; Westen and Terlien
1996; Watts 2004; Sarkar and Kanungo 2004; Pradhan
and Pirasteh, 2010; Zhou et al. 2003; Lee and Dan 2005;
Lee et al. 2004; Westen et al. 2008; Jebur et al. 2014).
Moreover, they have applied the logistic regression
model to landslide hazard mapping (Lee and Pradhan
2006; Choi et al. 2012). Recently, landslide hazard evalu-
ation carried out by using fuzzy logic, and artificial
neural network models (Lee et al. 2004; Yilmaz 2010;
Lee et al. 2014). During the last decade, researchers indi-
cated that landslide susceptibility and deformation meas-
urement have extensively performed particularly for the
landslides assessment (Luzi et al. 2000; Schulz 2004; Su
and Bork 2006; Streutker and Glenn 2006; Schulz 2007).
They have integrated traditional and advanced methods
such as classical geodetic surveying techniques (i.e. the-
odolites, photogrammetry, Global Navigation Satellite
Systems (GNSS)), LiDAR, satellite based observation
systems, and the GIS technology by applying stochastic
and deterministic models. However, the weakness is that
the points collected from theodolites, photogrammetry,
levels and GNSS, satellite imageries, perform quite low
in density. For example, McKean and Roering (2003)
studied the low-density digital elevation model (DEM)
to determine the potential to differentiate morphologic-
ally components within a landslide (Lee and Dan 2005;
Glen et al. 2006; Lee and Pradhan 2006; Yilmaz 2010;
Niculitd 2016). They explored how to provide insight
into the material type and activity of the slide. As a re-
sult, the literature review indicated that these techniques
and low pixel resolutions of DEM and satellite imageries
could not provide sufficient enough accuracy to visualize
the objects extracting an informative description of the
landslide locations and to predict the probability of the
landslides occurrence.

In this study, a high-resolution LiDAR DEM (5 m)
has associated with the ASTER DEM (15-m spatial
resolution). The Google Earth high-resolution images
were used in conjunction with the existing spatial
distribution inventory landslides map (1:25,000 scale,
Natural Resources of Iran) to apply the PFR model.
This approach can contribute a new potential method
to research scholars improving landslide evaluation
and the quality of susceptibility mapping prediction.
Therefore, we collected the existing inventory spatial
distribution of landslides data, Google Earth’s images,
LiDAR point clouds, and ASTER data to study landslides
probability prediction of the Alborz Mountains in
Iran.
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The Iranian plateau has potential to earthquakes and
of various kinds of landslides (Ali et al. 2003a; Ali et al.
2003b; Ali and Pirasteh 2004; Pirasteh et al. 2009;
Jaboyedoff et al. 2012; Pirasteh et al. 2015; Niculita
2016) because of a high tectonic activity, rugged topog-
raphy, geological setting, and climatologic variety. Most
of these landslides occur within two main mountain
ranges. They are a) Alborz range with NE-NW trend
and b) the Zagros range with NW-SE trend. Landslides
risk in Alborz range, particularly in the Central Alborz,
has a higher risk than other regions (Shoaei et al. 2005).
In the last decades, the study area has experienced
landslides in the Central Alborz for example, the
Hajiabad- Oshan Road in 2003, Fasham-Meygon road in
2006, and Atashgah-e-Karaj in 2008. Moreover, several
landslides and rock fall occurred in the Chalus—Tehran
road that was induced by Baladeh-Kojour earthquake on
28th May 2004. These catastrophic landslides have
proven that a significant attention with an improved
method such as LiDAR high-resolution DEM associated
with the PFR approach requires evaluating landslides
susceptibility mapping. Therefore, we have selected the
Marzan Abad area from the Central Alborz, as it is
highly populated area and susceptible to landslides, par-
ticularly those of which are triggered by earthquakes.

The objectives of this study are a) to use the LiDAR
point clouds of a high-resolution DEM to associate with
contributing factors, and b) to improve the quality per-
formance of the PFR model in assessing and predicting
landslide susceptible areas in the Central Alborz by
evaluating LiDAR point clouds of a high-resolution
DEM and other influencing factors. Nevertheless, this
study contributes the effectiveness of the LiDAR point
clouds on improving the performance of landslide sus-
ceptible assessments, and how it increases the quality of
the PFR model outcomes. In order to satisfy the above
objectives, landslide susceptibility analysis techniques
have been applied and verified in the study area using
the previous research outcomes. We have also assessed
landslide-related factors in the GIS software (ArcGIS
10.4) by implementing the analysis tools for spatial
management and data manipulation. Finally, we had
achieved an acceptable accuracy of landslide suscepti-
bility map by applying the PFR model when we used
a high-resolution of DEM.

Study area

The Iranian plateau is the part of the Eurasian Plate
wedged between Arabian and Indian plates. It situates
between the Zagros mountains to the west, the Caspian
Sea and the Koppeh Dagh to the north, the Hormuz
Strait and the Persian Gulf to the south, and the Hindu
Kush to the east. Alborz Mountainous in the north of
Iran constitutes a narrow belt of only 100 km wide.
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These mountains are a part of Alpine-Himalayan system
in the western part of Asia which wraps around the
South Caspian Sea from the northwest to northeast of
Iran (more than 1500 km). The study area is located in
the Central Alborz at a distance of 30 km to the Caspian
Sea in the north, and 100 km to the capital city of
Tehran in the south. It covers an area of about
1048 km? and locates between Latitudes 36°15'00” N to
36°35'00” N and Longitudes 51°07'30" E to 51° 27'30"
E (4,014,000 N-4048000 N and 511184E-541004E in
UTM) as presented in Fig. 1.

The elevation of the study area decreases from the
south (about 4000 m) to the north, in runoff Chalus
River. Chalus River is one of the most important
rivers in the Central Alborz and cuts the area in the
northeast, and is forming a deeply incised valley. This
river transfers water from high-lands with annual
precipitation less than 400 mm to the lowlands in the
south of the Caspian with annual precipitation of
above 1000 mm.
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Method

Data collection and preparation

Data collection and preparation are the first fundamental
and essential step to the landslide hazard analysis. In this
study, we composed the GIS database into five parts: 1)
Generating of a high-resolution (5 m) LiDAR DEM and
15 m spatial resolution of the ASTER DEM (VNIR), 2)
Google Earth’s images, 3) landslide inventory map, 4)
landslide predisposing factor maps and topography
maps, and 5) Global Positioning System (GPS) data
collection from field observations.

The existing landslides inventory spatial distribution of
the area (Fig. 1) has given insights to recognize the land-
slide prone areas. Newly, landslides have been extracted
from the LiDAR high-resolution DEM and the ASTER
DEM in conjunction with field observations (Fig. 2). The
visual image interpretation of the DEMs and Google
Earth’s images (dated in December 2009, December
2010, December 2011, December 2012, December 2013,
December 2014, December 2015, and December 2016)

Iran Landslide Inventory

Fig. 1 a Study area of the Central Alborz Mountains. b Landslides inventory of geographical distribution in Iran




Pirasteh and Li Geoenvironmental Disasters (2017) 4:19

Page 4 of 17

Fig. 2 Landslides in Imamzadeh Ali, Marzan Abad, Central Alborz Mountains
A\

in conjunction with field observations (i.e ground
control points (GCPs)) were carried out in the ENVI
4.2 software by using geotechnical and photographic
elements. The ENVI 4.2 software allows us to operate
a digital image processing (DIP) such as geometric
correction, enhancement, and filtering on Google
Earth’s images.

The landslide susceptibility evaluation requires know-
ledge of factors leading to landslide analyses. We have
determined the influencing factors of the landslides
(Varnes 1978; Anbalagan 1992; Brunsden, 1996; Guzzetti
et al. 1999; Donati and Turrini 2002; Zhou et al. 2002;
Jebur et al. 2014). The reviewed literature and field in-
vestigations have identified that the most influencing
factors in the study area are: Topography, lithology, soil,
geomorphology, steepness of slopes, land use, and
distance from road networks and drainage (Nichol and
Wong 2005; Metternicht et al. 2005). We have subdi-
vided each category into different classes by its value or
feature. All influencing factors have obtained or created
in the form of maps, and they are representing large
quantities of spatial data. The preparation of a suscepti-
bility mapping involves manipulating, analyzing, and
presenting data in the GIS.

In this study, we have prepared the digital geology
map of the study area based on a combination of two
analog geological sheet maps at 1:100,000 scale, namely
Marzan Abad and Chalus, (Geology Survey of Iran
2001) and Google Earth’s image interpretation (Fig. 1).
We have created the geomorphology map based on the
geology and topography map in 1:25,000 scales associ-
ated with the ASTER DEM. A slope thematic map was
extracted from the LiDAR high-resolution DEM of the
area with a spatial resolution of 5 m (Fig. 3). We col-
lected the soil map (1:25,000 scale) from the Ministry of

Natural Resources of Iran. A field survey has verified the
given digital soil map. Road and drainage maps were ex-
tracted from the topography map of the study area (Na-
tional Cartographic Center organization) of 1:25,000
scale. The landuse thematic map and the Normalized
Difference Vegetation Index (NDVI) of the study area
were provided by the Natural Resources of Mazandaran.
The landuse map was modified by a field check. Table 1
depicts the summarized information about data layers.

Processing of LiDAR point cloud data

In spatial analysis measurements, the high-resolution
DEM and its derivatives such as slope have been consid-
ered for the landslide susceptibility mapping. The high-
resolution DEM of the Central Alborz is the most useful
representation of terrain in the GIS for spatial analysis.
A high-resolution DEM is the raster representation, in
which each grid cell records the elevation of the
earth’s surface, and reflects a view of terrain as a field
of elevation values. In this study, a resolution of 5 m
in the pixel was applied for grids to generate the
high-resolution DEM.

LiDAR point cloud data in LAS format were collected
for the Marzan Abad from the Central of Alborz Moun-
tain. We used LAS data to generate a DEM in ArcGIS
software. To process the data we used a semi-automated
method to remove the noise and classify the objects
(Evans et al. 2009). This semi-automated method allowed
us to detect and interpret particular objects in the study
area. The pre-processing technique has been applied to
the point cloud data to achieve the certain level of quality
data before it uses for a landslide susceptibility mapping.
We extracted the bare-earth (i.e. segregating objects such
as trees from the surface and extracting the earth’s
surface). This process has a direct impact on the quality of
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Fig. 3 LiDAR high-resolution TIN. Showing landslides on the triangular irregular network (TIN) model of the study area
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Table 1 Predisposing factors and GIS data in for the study area

Classification Sub-Classification GIS Data Type Scale

Geological Hazard Landslide inventory Point and polygon coverage 1:25,000

Basic maps LiDAR DEM Slope GRID 5x5m
ASTER DEM GRID 15Xx15m
Topographic roads and drainage Poly line coverage 1:25,000
map
Geology Polygon coverage 1:100,000
Soil Polygon coverage 1:25,000
Landuse GRID 30x30m
NDVI GRID 30 x 30 m
Geomorphology Polygon coverage 1:25,000

the DEM and landslide investigations. During last
decades, various solutions and algorithms for the classifi-
cation of the LiDAR data were published (Glenn et al.
2006; Derron and Jaboyedoff 2010; Su et al. 2015). The
method was based on the surface interpolation and the
DEM was generated based on the X,Y,Z points of the
whole study area (Pfeifer et al. 1998). To determine the
relationship and influence of each individual grid of
factors such as landuse etc. within the whole DEM of the
study area in the GIS, we are required to consider the
whole DEM and the individual factor to identify the
number of pixel/grid’s contribution to a landslide. We
used Hierarchical Robust Filtering (HRF) method and
ArcGIS 10.4 software to develop the high-resolution DEM
and TIN of the study area (Fig. 3). The HRF method
is originally designed for laser data in the vegetated
and rugged topography areas such as Central Alborz
Mountains.

This algorithm is embedded in the SCOP++ soft-
ware. The HRF is also called as robust interpolation
method and it involves four processing approaches.
They are 1) thin out, 2) filter, 3) interpolate, and 4)
sort out. The thin out approach is a raster based
thinning algorithm. It lays a grid over the complete
data and selects one point for each cell. In the filter
approach, a DEM is computed, but this time a
weighting function. It is used to provide a low to
high computational weighting for each cell. The
weight function has a half of its maximum value (h is
the half-width value) at h above round (g). These
values determine the steepness of the weight function
at a particular point. The cut off refers to “t” in the
right tail the weight function (Fig. 4). As for the
interpolation, a DEM is derived from the current data
set by interpolation approach without differentiating
data points. As for the sort out step, we define the
distance from the calculated DEM by data points and
three iterations. The classifying step has completed

the filtering procedure. The major extension of the
sort out step was to classify step.

ASTER DEM

ASTER images are in the form of HDF-EOS. We can
work on these images to import them by using the soft-
ware Ortho-Engine as part of the PCI Gemomatica 9.1.
DEMs were generated automatically by using DEM
extraction tool from the PCI Gemomatica 9.1. Figure 5
illustrates the flowchart of the methodology employed
for ASTER DEM generation. We selected stereo images
VNIR nadir and backward images (3 N and 3B) to gen-
erated the DEM. A detailed description of the procedure
provided by Al-Rousan et al. (1997) and Ulrich et al.
(2003). In this study, we collected 23 tie points (TPs)
between the stereo-pair because we have not ground
control points (GCPs) available. The elevation for some
TPs was known. By using the PCI Gemomatica 9.1 we
could extract the total RMS of the TPs which is <1.17
pixel. The 3D DEM of the study area (Fig. 6) was gener-
ated at 30-m pixel resolution with the highest level, and
the holes were filled by automated interpolation (Fig. 5).
The quality of the ASTER DEM was satisfactory.
However, we re-sampled the DEM into 15 m to exploit
the full ortho-image resolution (Al-Rousan et al. 1997;
Kamp et al. 2003).

PFR model approach

In this study, we assumed that future landslides would
occur under similar circumstances to those of previous
landslides. This study applies the PFR model based on
the given assumption. Frequency ratio approach is based
on the observed relationships between the distribution
of landslides and each landslide-related factor, to reveal
the correlation between landslide locations and the fac-
tors in the study area (Lee and Pradhan 2006). In order
to apply the PFR model, a spatial database of landslide-
related factors was constructed in the GIS platform. All
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data layers (Table 1) were converted to the GIS format
and were geo-referenced into the Universal Transverse
Mercator (UTM) coordinate system, and maps have rep-
resented each factor in the GIS environment (Fig. 7).
Then we construct maps of various factors in different
classes. A fine grid was overlaid over the study area.
Each grid cell represents a small unit area (rasterization).
The data layers have obtained a square-grid matrix with
3400 lines by 2982 columns, and each pixel represented
5 x 5 m area on the ground (Fig. 3). By utilizing the
overlay of training subsets of landslides, geospatial distri-
bution map, and different predisposing factors’ ranges
such as topography, the spatial relationship between
landslide locations and each factor’s range was extracted.
The numbers of landslide occurrence pixels in each class
were evaluated, then the Frequency Ratio (FR) value for
each factor’s range was calculated. It allows dividing the
occurrence landslide ratio by the area ratio. Landslide
frequency ratio can be calculated by the ratio of percent
domain of a factor class and percent landslide in that
class. Then the frequency ratio (FR) method has imple-
mented to evaluate the rank of correlation between the
selected factor’s ranges (ie. slope, land use, soil,

| Stereo pair procurement |

Topographic maps

| Importing topographic maps |

Image import into PCI
compatible format

| Acquisition of TPs in the stereo modeling l

l Compute the model in stereo (Bundle adjustment) I

| Epipolar image generation |

Computed output DEM

Manual editing of DEM to cover the :
failure areas Reference topo-sheets

Fig. 5 Flowchart of the ASTER DEM generation
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lithology, distance from drainage, and distance from the
road network) and landslide locations in the study area.
The value of 1 for FR value is an average value. In this
study, we defined that the greater ratio above the unity
means the stronger correlation is between the selected
factors and landslides geographical distribution. Like-
wise, the lower ratio than unity means we have a lower
correlation between landslide occurrence and the given
factors attribute. Therefore, based on the calculated FR
values, the relation of each category’s factor with land-
slide occurrences have been evaluated. After the FR
values calculation, we calculated the Landslide Suscepti-
bility Index (LSI) for each pixel of the study area. This
method considers a point x with m (number of layers)
pixel values (x1,..., xm) in the study area. In pixel x, LSI
can be calculated by summation pixel values (x1,....,
xm), as indicated by the following equation:

LSI = Fra,.m) (1)

Performance of the effect analysis

One of the fundamental steps in the FR approach and
the landslide susceptibility mapping process is validation.
We have applied the authentic process to determine the
reliability of the previous data and parameters that in-
volve in the present study. We obtained the data from
the Geological Survey of Iran and the National Geo-
science Database of Iran. We have verified the perform-
ance of our result by comparing the existing landslide
inventory geospatial distribution map with the landslide
susceptibility map (a cross-validation technique). Previ-
ous studies (Dietrich et al. 1995; Duan and Grant 2000;
Lee and Dan 2005; Liu et al. 2012; Jebur et al. 2014) used
“success rate” to evaluate the model performance. The
success rate is defined as a ratio of how many actual
landslide sites are successfully predicted and allow us to
estimate the goodness of the fit of the predictive models
with actual landslide sites.

In this study, the results of the landslide susceptibility
analysis and the prepared landslide prediction map have
verified using the test subset of landslides for the same
study areas. Test subset includes unconsidered landslide
locations (20% of all) and some newly mapped landslides
through image interpretation and ground truth observa-
tions with the help of the Global Positioning System
(GPS) (Fig. 8). Intersections between the prediction
image and total landslide locations allowed us to com-
pute the number of occurred landslides in each LSI
values. However, the method could determine the
performance of the output information, and the
approach has improved the method of landslide evalu-
ation for susceptibility mapping utilizing the LiDAR
high-resolution DEM.
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Fig. 8 Field observations and newly mapped landslides verified landsides extraction from the raster image interpretation of the LIDAR
high-resolution DEM

J

Nevertheless, a far less conventional procedure in con-
junction with the state-of-the-art technologies such as
LiDAR high-resolution data and PFR method results in a
much more satisfying outcome for all concerned. The
calculated index values of cells sorted in descending
order to obtain the success rate of the curve. We divided
the ordered cell values into hundred classes and accu-
mulated 1% intervals to present the percentage of land-
slides in the study area. Also, some landslide occurrence
in each Index value are representing as a percentage of
total landslides cumulatively. Effect analysis studies have
associated with the high-resolution of DEM and land-
slide influencing factors indicated how a solution could
change when the input factors are changed. This analysis
quantifies the uncertainty of each factor. In this study,
the effect analyses have been conducted by the exclusion
of each factor in turn during the summation stage using
Eq. 1. However, the effect of each contributed factor
evaluates the related success rates by using the area
under the curve calculation.

Results and discussion

PFR model and factors analysis: an improved landslides
susceptibility map

We used LiDAR point clouds DEM and ASTER DEM to
identify newly landslides from existing inventory dataset
in conjunction with the field observations. The high-
resolution of LiDAR DEM has a better performance
identifying new landslides than ASTER DEM, and also
implementing the PFR model from LiDAR DEM demon-
strates an acceptance precision and quality of the sus-
ceptibility mapping. The study shows that geology is
playing a major role in controlling factors for landslides
in the Central of Alborz since the geology of this area is
very complex. Lithologically, the study area comprises
several formations as depicted in Table 2. The FR calcu-
lations (Table 3) results that the highest FR values are
the most susceptible groups for landslides occurrence.

They belong to areas with some geological layers out-
crops such as Qi, Ky1,P,, Ky, and Kipp (FR: 39.5, 9.0,
3.3, 1.5, and 1.5, respectively).

These groups are mainly including marl, marl lime-
stone, limestone, shale associated with old landslides,
and rock stream traces which mostly are fissile, soluble
and easily weathered materials. The lowest FR values
(FR = 0) belong to geological groups including J;, TR3J;,
Pg4, Eg, E1, Oy, P1g, and PE.. FR values are showing a very
low correlation with landslide occurrence (Table 3).
Thus, we predict a very low susceptibility of landslide
occurrence in these classes. The strata mostly contain
dolomite, cherty dolomite sandstone, siltstone, and
quartzite. We identified that they are among the resist-
ance and hard fracturing litho units in the study area.

Landuse map has indicated that the most hazardous
classes are in the lake area (coastal landslides), agricul-
tural lands, and grasslands (FR value 3.8, 2.6, and 1.3, re-
spectively). It is because of geological characteristics
(Kipm2 and Q;) and water influences in the coastal area.
Thus we expect a higher FR values than other locations.
In the study area, the agricultural lands are controversial
because the landuse and landcover situation of Marzan
Abad area at the time of failure is unknown. Moreover,
it is not possible to know whether the presence of agri-
cultural lands was a cause of failure or consequence. In
fact, it is also possible to possibly say the changes in
steepness are due to the evolution of the scarps that may
have favored with agricultural lands. This study shows
that deep soils from alluvial and fine alluvial soils are the
most susceptible groups for landslide occurrence with
FR > 2. Geomorphologically, deep valleys and debris
lands are the most susceptible classes with FR > 2. Allu-
vial fan and alluvial plain area have the lowest suscepti-
bility of landslide occurrence with FR = 0 that we have
not expected.

The relationships between landslide occurrences and
the slope show that gentle slopes have a low frequency
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Table 2 Different formations and lito-units in the study area
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Ara Period Formation Code Lithology Area covered
(KM?) %
Paleozoic Up-Pre. KAHAR PEx Salty shale, sandstone, minor dolomite, 148.33 14.64
Cambrian quartzite
Cambrian SOLTANIEH PEe Thick bedded to massive light-colored 53.64 530
dolomite, locally with chert bands
BARUT Ep Micaceous variegated siltstone and shale, 88 087
cherty dolomite intercalations
LALUN E, Red arkosic sandstone 19.77 1.95
Ordovician MILA O, Sandstone, shale, limestone, marl phosphatic 2.08 0.21
layers
Carboniferous MOBARAKL Cw Black limestone, dolomitic limestone, marl 80.38 794
intercalations
Permian DORUD Py Sandstone, shale, limestone intercalatoins, 26.93 266
quartzite, siltstone
Py Basic flows, pyroclastics, sandstone 0.99 0.10
RUTEH P Fusulina limestone, dolomitic limestone 4397 434
NESEN P, Cherty limestone, marly limestone, marl 3.88 038
and sandy shale
Mesozoic Triassic ELIKA TRem Thin-bedded limestone, calcareous shale, 277 027
quartzitic sandstone
TRyc Massive dolomite 36.04 356
SHEMSHAK TRsJs Shale, sandstone, siltstone, claystone, 17945 15.28
) ) quartzite, conglomerate, locally limestone
urassic intercalations: coal seams and lenses
LAR N Limestone, locally dolomitic limestone 835 0.82
Cretaceous TIZ_KUH Ky Orbitolina limestone (Apian - Cenomanian) 31.09 3.06
CHALUS Kis Limestone (Berriasian - Valanginian) 2.04 020
K21 Alkali basalt, spilitic basalt conglomerate, 71.05 6.07
tuff braccia, tuff
Kvas Trachyandesitic basalt, tuff breccia, 4158 4.10
pyroclastics, tuffite
K> Globotruncana limestone, marl limestone 69.77 6.89
Ko Marl, calcareous marl, marly limestone 51.11 5.05
Ky Alternations of limestone and marl 33.06 326
Cenozoic Tertiary P1Q Conglomerate, sandstone, siltstone, 28.28 2.74
siltymarl
Quaternary Q Undifferentiated young & old alluvial fans, 90.81 890
traces, colluvium, residual soils, fill valley
sediments lake deposits
Q1 Landslide and rock stream 1148 1.13
river and lake Water body, terraces, colluvium, residual soil 2.80 027
total 104845 100.00

of landslides because they have a lower shear stress. We
found that at a slope of 10° or less, the frequency ratio
was below 1. It is indicating a low probability of land-
slide occurrence. However, slopes above 11° have a ratio
of >1 are showing a higher likelihood of landslide occur-
rence. The areas with slope steepness of more than 40°
and cover a less than 4% of the area are mostly covered
by bedrocks (i.e. volcanic rocks). However, this part of

the study area with slope steepness of more than 40°
have a lower probability of a landslide.

This study reveals that road networks have a strong rela-
tionship with landslide occurrence because of cut-slope
creations through roads construction. We found that the
closer distance to the road, the greater the chances of a
landslide occurring. The distance of <100 m, are the most
susceptible class with FR > 3, and areas with a distance of
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Table 3 Frequency ratio of factors to landslide occurrence

Page 11 of 17

Factor Class Total number of pixel Landslide occurrence pixel Frequency
Number? % Number® % fatio
Soil Weathered 85,091 0.84 0 0.00 0.00
Medium soil form 804,145 7.94 0 0.00 0.00
alluvial
Thin soil over rock 658,226 6.50 15,979 7.80 1.20
Medium soil over 2,185,002 2157 80 0.04 0.00
the rock
Medium soil over 1,746,851 17.24 60913 29.72 1.72
colluvial
Deep soil from 111,793 10.32 5300 2.59 2.34
alluvial
Fine alluvial soils 1,045,712 345 45,430 2217 2.15
Thin sandy soils 349,206 31.04 1939 0.95 027
Rocks 3,145,180 1.10 75,275 36.73 118
Distance from 100 4,424,123 43.67 76,569 37.36 0.86
drainage (m) 200 2,464,779 2433 59,288 2893 119
400 2222416 21.94 53917 26.31 1.20
800 987,245 9.75 15,042 7.34 0.75
>800 40,237 040 100 0.05 0.12
Slope 0-5 490,045 483 3442 1.68 035
(degree) 5-10 669,427 660 12333 6.2 091
10-20 2,746,384 27.09 67,408 32.89 1.21
20-30 3,200,304 31.56 67,151 32.77 1.05
30-40 2,530,305 24.96 47,358 23.11 0.94
40-50 453,592 447 6937 338 0.76
>50 48,743 048 310 0.15 0.31
Lithology TRem 27,679 0.27 785 036 133
PEE 536418 5.30 2 0.00 0.00
Pn 38,776 0.38 2735 1.27 331
Pr 439,706 4.34 5295 245 0.56
PV 9875 0.10 39 0.02 0.19
Q 901,467 8.90 10,859 502 0.56
Q1 114,961 1.13 96,880 4481 3949
TR3JS 1,547,999 15.28 654 0.30 0.02
K1 M2 330,740 3.26 10,652 493 1.51
KMm2 511,173 505 16,768 7.76 1.54
Kv22 415,791 4.10 12,040 5.57 1.36
P1Q 277810 2.74 0 0.00 0.00
Pd 269,380 2.66 42 0.02 0.01
TRdc 360,447 3.56 764 0.35 0.10
(@Y 804,135 7.94 11,461 530 0.67
o1 20,800 0.21 0 0.00 0.00
Factor Class Total number of pixel Landslide occurrence pixel Class
Number® % Number® %
Lithology E1 197,786 1.95 0 0.00 0.00
Eb 87,995 0.87 1 0.00 0.00
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Table 3 Frequency ratio of factors to landslide occurrence (Continued)
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PEK 1,483,288 14.64 6760 3.13 0.21
1 83,479 0.82 147 0.07 0.08
K1 309,512 3.06 1364 063 0.21
K11 20,444 0.20 3925 1.82 9.00
K12 697,915 6.89 10374 4.80 0.70
kv21 614,502 6.07 13,330 6.17 1.02
river 25,575 0.25 0 0.00 0.00
lake 2424 0.02 64 0.03 1.24
Land use Agriculture land 1,467,497 1449 78,969 3853 2.66
Settlement 407,629 4.02 9869 4.82 1.20
Open Vegetation 2,914,371 2877 49,777 24.29 0.84
Lake 2101 0.02 163 0.08 3.84
Grass land 1,395,207 13.77 36,045 17.59 1.28
Dense vegetation 3,385,573 3342 30,078 14.68 044
Bad land 558,122 551 38 0.02 0.00
Distance from road (m) 50 226,534 223 15,779 7.70 345
100 223,772 2.21 14,477 7.06 3.20
200 428,101 422 20,930 10.21 242
400 784,725 7.74 30,603 1493 1.93
800 1,344,647 13.26 31,178 15.21 115
>800 7,131,021 70.33 91,972 4488 0.64
Geomorphology Debris land 255,864 253 15,629 723 2.86
Deep valley 670,098 6.61 45,181 20.90 3.16
Limestone Relief 1,373,183 13.56 3040 141 0.10
Moderate Relief 2,238/436 22.10 58,355 26.99 122
Alluvial Fan 263,711 2.60 0 0.00 0.00
Alluvial Plain 385,201 3.80 0 0.00 0.00
Alluvial Terrace 311,277 3.07 10,000 4.63 1.51
Volcano Relief 4,632,287 45.73 72,711 33.64 0.74
*Total number of pixels in the study area: 10,138,800 pixel (Without no data)
PTotal number of landslide occurrence pixel: 204,939 pixel (Estimation group)
Table 4 Statistics of the LS| value for all cases
Min. value Max. value Mean value Std. AUC ratio
Except drainage 1.5 53.87 595 5.01 0925
Except solil 1.8 53.34 5.95 4.85 0915
Except slope 1.52 53.86 595 501 0.924
Except road 1.66 52.05 595 487 0.909
Except landuse 1.85 5241 5.95 483 0.920
Except geology 2.21 13.83 595 1.93 0.789
Except geomorphology 1.56 5191 6.0 481 0921
Total factors 23 55.07 6.95 5.02 0926
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Fig. 9 Geospatial distribution of landslides inventory and recent landslides on the Landsat TM (RGB:742) imagery
.
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>800 m from the road network show a minor relationship
with landslide occurrence (FR < 1).

Landslide Susceptibility Index (LSI) calculation shows
that the LSI has a minimum range value of susceptibility
class of 2.3, and a maximum range value of susceptibility
class of 55.7, with an average value of 6.95 and a
standard deviation of 5.02 (Table 4). Nevertheless, we
prepared the geospatial distribution of updated landslide
inventory dataset which illustrated on the Landsat TM;
and this improved inventory dataset includes recent
landslides, minor-medium and human casualties land-
slides (Fig. 9). The final landslide susceptibility map in
five susceptibility prediction class based on the LSI
values (Fig. 10).

Figure 11 shows the evaluated success rate curve is
very steep in the first part of the curve. It means an ex-
cellent predictive capability. This study found that more
than 50% of the landslides are locating in 3% of the area
where landslide hazards index have a higher rank. Also,
about 22% of the study area has predicted as the most
hazardous areas. However, we found that 90% of land-
slides are in these regions. The area under the curve

Page 14 of 17

total area = 1 denotes a perfect prediction. In this study
area, the ratio is about 0.926. The study has indicated
92.6% agreement between the prepared susceptibility
map and landslide locations from the existing landslide
inventory geospatial distribution map and the field ob-
servations. However, it is a very promising result, and we
improved the quality of the landslide susceptibility map-
ping by using the LiDAR high-resolution DEM associ-
ated with PFR model.

Figure 12 shows seven success rate prepared by the
exclusion of each factors’ values from the original sus-
ceptibility map. Also, Table 4 depicts statistics of the LSI
value for all cases.

This study reveals that by using the effect analysis, we
can know the influence of factors on the landslide
susceptibility map, qualitatively. However, the selection
of positive factors associated with the PFR and a high-
resolution DEM and its derivatives can improve the
prediction accuracy of the landslide susceptibility map.
Table 4 shows that geology of the area is the most
important and the most effective factor on landslide
analysis (AUC ratio = 0.789) in Marzan Abad area. In

(AUC) (Fig. 11) assesses the prediction accuracy, and the addition to geology, the roads network (AUC
X
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Fig. 10 Landslide susceptibility and hazards prediction map of Marzan Abad area, Central Alborz Mountains
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ratio = 0.909) and soil (AUC ratio = 0.915) have the
most influencing factors on the evaluation of landslide
susceptibility mapping. Despite from the mentioned fac-
tors, all other effective factors are showing a relatively
small and a positive effect on landslides analysis (AUC
ratio < 0.926). It can be concluded that all selected fac-
tors have some positive influence on the landslide haz-
ards analysis and improved landslides prediction.

Conclusion and suggestion

This study can motivate the Iranian Government to cap-
ture the LiDAR point cloud data for development of big
data and geodata analytics for the landslide inventory of
Iran. We concluded that how LiDAR DEM high-
resolution impacts the PFR model outcomes and in-
creases the precision and quality of the susceptibility
mapping as compared with the ASTER DEM with 15 m
in resolution. As an advanced technique, LiDAR could
provide a good set of three-dimensional data with X, Y
and Z axis of Marzan Abad area. The PFR model applies
on the high-resolution DEM, and its derivative such as
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slope has provided an improved quality of outcomes of
landslide susceptibility mapping in conjunction with the
ASTER DEM and Google Earth’s images. This study
provides detailed information such as color, geologic,
and geomorphic using LiDAR data to generate an
improved quality of DEM’s derivatives to assess and pre-
dict landslides.

This study concluded that movements and landslide
predisposing factors such as topography are similar to
those verified landslides in the past. Therefore, this
enables us to predict the future slides occurring in a
non-specified time span. This study constructs accept-
able relationships between improved landslide inventory
(Fig. 9) spatial distribution and influencing factors for
landslide susceptibility mapping utilizing PFR model and
LiDAR approach extracted a high-resolution DEM. The
PER was applied to study the influence of different earth
surface factors on the landslide occurrence and evaluat-
ing the landslide susceptibility. This model has advan-
tages such as simplicity, and moreover, inputs, outputs,
and calculation process are understandable. Also, a large
amount of data can be processed in the GIS environ-
ment quickly and easily. Based on the qualitative studies,
the influencing factors on the landslide susceptibility
map were evaluated to select positive factors and to
improve the prediction accuracy of the landslide suscep-
tibility map. It means that the selection of factors is sig-
nificant to landslide susceptibility mapping. This study
emphasizes that the most significance causative factor is
geology, soil, and roads network. However, we have
identified that other factors have positive influences on
the landslide susceptibility analysis.

Nevertheless, this study concluded that the most sensi-
tive classes to landslides in the Central Alborz are: a)
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Quaternary deposits, b) Chalus Formation, and c) Nesen
Formation. In addition to the above, we have evaluated that
areas below 100-m distances to the roads with more than
10° slope are predictable to landslides. Also, this study
brings attentions to decision makers because we have deter-
mined the most landslide susceptible areas in deep alluvial
soils, deep valleys, debris lands, and the area near water.
This study prepared improved landslide susceptible map
and it is showing recent landslides on the map. Thus, deci-
sions makers can use it for future operations. However, the
information provided by this map can help citizens, plan-
ners, and engineers for loss reduction that might have
caused from existing and future landslides. This study sug-
gests that factors such as tectonic activities, seismicity, the
vulnerability of buildings to be considered for evaluating
the PFR model when researchers use LIDAR point cloud
data and satellite images. It is because high tectonic activ-
ities and earthquakes can trigger landslides.
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