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Abstract

This research examines the susceptibility of logged and regenerated forest region to erosion through the
application of the analytical hierarchy process (AHP) and geographical information systems (GIS). In order to
estimate terrain erosion susceptibility, ten geo-environmental variables were taken into account as possible factors
relevant to terrain erosion. They are slope, aspect, relative relief, slope length and steepness (LS) factor, curvature,
landforms, topographic wetness index (TWI), stream power index (SPI), stream head density, and land use/land
cover. Pairwise comparison matrixes were generated to derive the weightages and ratings of each variable and
their classes. These were integrated to generate the terrain erosion susceptibility index (TESI) map. Among the
variables used in the analysis the land use/land cover, slope, SPI, stream head density, and LS factor were shown to
have high contribution towards terrain erosion susceptibility. The areas with a concave slopes >25° and high
relative relief, LS factor, TWI, and stream head densities were found to be more susceptible to erosion such as
gullying or landslides. The conversion of TESI into terrain erosion susceptibility zonation (TESZ) map shown that
25% of the total area is highly susceptible to erosion. Among this, 10% of the area possesses a very high
vulnerability to landslides and gullying or soil slips and these areas coincide with logging roads and skidder trails.
Linear regression analysis between TESI and TESZ with spatial distribution of mean annual rainfall in the region
does not show any significant relationships (p > 0.10). However, high rainfall triggers rapid downstream movement
of unsupported slopes in the region. The terrain erosion susceptibility zonation map expresses the realistic
condition of logged terrain matching with field observations in the area in terms of erosion. The results can serve
as basic data for future development programs in the region, in any projects where the terrain susceptibility is
critical by planning infrastructure to avoid high risk zones.
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Introduction

Erosion, either as soil loss or landslides, is the natural
denudation process or a stage of geomorphic evolution
of terrain which is responsible for generating different
topographical features (Thornbury 1969). The natural
erosional or denudational process will take place at given
rate and any recent changes in the normal rate of ero-
sion may reflect changes in the equilibrium condition of
the terrain due to anthropogenic causes. Erosion and
allied mass wasting problems are common in hilly areas,
but their severity will vary depending on the geo-
environmental factors involved. Steep sloping, highly
elevated rugged terrain may be fragile in terms of geo-
logical, vegetation, and climatic factors making it more
vulnerable to erosion, which may be aggravated by
human induced developmental activities (Fadul et al.
1999). The fragility of such terrains can be termed as
susceptibility to erosion. Assessment of the susceptibility
of the terrain to erosion and classification into different
susceptibility zones is an important step to understand-
ing an area’s vulnerability to erosion for development of
proper management plans and mitigation strategies (Dai
and Lee 2002; Ayalew et al. 2004; Bijukchhen et al. 2013;
Erener et al. 2016; Pham et al. 2017). Susceptibility map-
ping is generally used in landslide and gully erosion
modelling, the goal of which is to identify potentially
vulnerable areas which are those with several critical
variables. To understand the susceptibility of a region to
erosion, either as landslides or gullying, different
methods which use expert opinion (qualitative), statis-
tical prediction (quantitative), or both may be applied
using geographical information systems (GIS).

In order to assess the susceptibility, a number of geo-
environmental variables such as geomorphology, slope,
land use, lithology, etc., as well as palaeo locations of the
phenomena have been used (Kheir et al. 2007; Akgiin
and Tiirk 2011; Dewitte et al. 2015; Kavzoglu et al. 2014;
Goémez-Gutiérrez et al. 2015; Chen et al. 2016a; Garosi
et al. 2018). Among these, most of the parameters con-
sidered as natural parameters and the land use/land
cover existed in the area is only man made i.e. it was
mainly controlled human activity. Expert opinion
method relies on the field knowledge and expertise of
the analyst to determine the influence and weights of
each parameter and parameter classes, whereas statis-
tical techniques use well defined bivariate or multivariate
analysis techniques through dependent and independent
variables to determine the relative importance of each
variable (Bourenane et al. 2015; Rahmati et al. 2016).
The suitability and selection of methods to produce sus-
ceptibility map is often heavily depend on the availability
of data sets of independent geo-environmental variables
particularly information on previous incidents of land-
slides or gullies (Luca et al. 2011; Conoscenti et al. 2013;
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Park et al. 2013; Shit et al. 2015; Althuwaynee et al
2016; Rahmati et al. 2017; Torri et al. 2018; Othman et
al. 2018). Although the output of susceptibility analysis
may vary in name such as landslide susceptibility zon-
ation (LSZ) map or gully erosion susceptibility map, the
analysis techniques and geo-environmental variables
used in the modelling are generally similar. Further
details of different techniques used to analyse terrain
erosion susceptibility can be found in Aleotti and
Chowdhury (1999), Guzzetti et al. (1999), van Westen
(2000), Brenning (2005), Huabin et al. (2005), and van
Westen et al. (2006).

In the present study, an attempt has been made to
model and classify the upper catchment regions of the
Baram River (Sarawak, Malaysia) in terms of susceptibil-
ity of the terrain to erosion due to gullying, soil slip, and
landslides. The region considered possesses very weak
geological formations (tightly folded sedimentary rocks
of various lithologies) covered by dense forest. During
the last few decades, the study area has undergone in-
tense terrain modification and forest clearing through
timber harvesting and logging road construction which
increased the vulnerability of the terrain to erosion
(Fig. 1). As a result of episodes of heavy rainfall, areas
with high vulnerability to erosion will flow or slide
downhill to valley streams and may deposit large quan-
tities of sediment in the rivers downstream. Very few
studies have reported on terrain susceptibility to erosion
in Sarawak and the reported studies deal with the soil
erosion assessment using soil loss equations (USLE
/RUSLE) (Besler 1987; de Neergaard et al. 2008; Vijith et
al. 2018a, 2018b; Vijith and Dodge-Wan 2018). Prior to
2018, no studies were reported from the selected upper
catchment region of the Baram River.

The present study is an initial attempt to assess terrain
erosion susceptibility and can be used as a basic and
valuable information while planning for roads and other
infrastructure developments. The study area lacks a
database of previous information related to erosion
(gullying and landslides in particular) and due to the
relatively inaccessible nature of the terrain, it is difficult
to map the locations of slides or gullies by direct obser-
vation in the field. To overcome these limitations, a
well-defined and tested predictive analysis model, i.e. the
analytical hierarchy process (AHP) which uses a combin-
ation of expert opinion and statistical measurements,
was applied in this research. Numerous researchers have
used the analytical hierarchy process to estimate the sus-
ceptibility to landslide or soil erosion in other parts of
the world and found it to be successful in predicting the
vulnerability of the region based on the parameters used
(Komac 2006; Neaupane and Piantanakulchai 2006;
Yoshimatsu and Abe 2006; Yalcin 2008; Nekhay et al.
2009; Svoray et al. 2012; Reis et al. 2012; Kayastha et al.
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Fig. 1 Slope failures observed in the study area
A

2013; Pourghasemi et al. 2012, 2013a; Youssef 2015;
Althuwaynee et al. 2016; Sangchini et al. 2016; Rahaman
and Aruchamy 2017; Arabameri et al. 2018b). The find-
ings of the present research will facilitate the identifica-
tion of areas critically vulnerable to erosion and
landslides and thus provides an opportunity to avoid risk
associated with terrain susceptibility while implementing
the developmental schemes in the region.

Study area

A forested region in the interior Sarawak, which has
undergone vegetation changes and terrain alteration due
to logging activities was selected for the present analysis.
The study area covers a total area of 2105 km? and con-
tains two major subwatersheds of the Baram River
namely Sungai Patah and Sungai Akah which are located
between north latitudes 3° 13" 15" to 3° 41" 50" and
east longitudes 114° 35" 42" to 115° 13" 20" (Fig. 2).
Though the subwatersheds differ in shape, both have
similar terrain and geological characteristics. The area is
highly undulating with elevations between 37 m to 1578
m asl. The bed rock consists of sedimentary rocks of
Paleocene, Oligocene, and Miocene ages. Most of the
study area consists of Oligocene shale and sandstone,
with areas of Paleocene deep water sediments composed
of shale and sandstone with occasional conglomerate
and limestone, and Miocene shale and sandstone. Nu-
merous anticlines, synclines, and local fractures are
present in the area showing tight folds with a common

northeast (NE) - southwest (SW) to north northeast
(NNE) - south southwest (SSW) trend. The drainage
pattern is predominantly dendritic but the presence of
trellis and parallel pattern in the region indicates the
influence of lithology and structural features on the
development of drainage networks. Geomorphological
features vary from highly elevated steep sloping escarp-
ments to low lying flat regions of fluvial floodplains.
Hills and mounds show highly complex shapes with a
sharp crests to rounded tops. The area receives an an-
nual average rainfall of approximately 4600 mm from the
two dominant monsoon seasons viz., southwest and
northeast monsoons. Rainfall shows high spatial and
temporal variations (Vijith and Dodge-Wan 2018) Vege-
tation cover varies from dense primary forest to open
spaces of barren land. The majority of the study area is
covered with forests of different types and density,
followed by mixed agricultural land (mainly hill paddy
cultivation) and then the open spaces with no vegetation
related to road development, villages, and logging. Initial
field observations indicated that the development of log-
ging roads and log trail (skidding and pulling trails) have
rendered the terrain more susceptible to erosion by
changing the continuity of the hills through toe cutting
and removal of the protective vegetation cover.

Materials and methods
The Sungai Akah and Sungai Patah catchments of the
Baram River were selected for the present research as
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Fig. 2 Study area location map

this is a data poor region. Mapping of terrain erosion
susceptibility is considered as the preliminary step to
understand the risks of soil erosion and landslide. An
erosion susceptibility map was generated using several
geo-environmental variables derived from various re-
mote sensing data sources such as digital elevation
model (DEM) and satellite images. The digital elevation
model, downloaded from the earth explorer (http://
earthexplorer.usgs.gov) website of U. S Geological Sur-
vey. Shuttle Radar Topographic Mission (SRTM) data of
30 m was used after it had been clipped to the study area
boundary and the voids filled by the Fill DEM module
available in the spatial analyst extension of ArcGIS soft-
ware. The filled elevation dataset was then used to derive
variables such as slope, aspect, relative relief, slope
length and steepness (LS) factor, curvature, landforms,
topographic wetness index (TWI), and stream power
index (SPI). Stream networks were produced from the
digital elevation model and stream head points were ex-
tracted to calculate the stream head density map. The
parameters are natural features of the region and terrain
and not affected by anthropogenic activities. Landsat 8
OLI images of the area acquired on 28th March 2015,
which reflect the current land use pattern were used to
produce the land use/land cover map through supervised

classification with field verification. Land use/land cover is
the most significant factor under the influence of an-
thropogenic activities which modify the protective vegeta-
tion cover. Different software used for the generation of
variables and final analysis are ArcGIS version 9.3 and
SAGA version 2.1, which operates in the raster GIS envir-
onment and the cell size for this analysis was fixed as
30 x 30m. The significance and methodology applied to
obtain each variable is described in text, as well as the
weightages attributed to each class of each variable.

In order to generate the terrain susceptibility map of
the study area by analyzing the contribution of each
variable which makes the terrain susceptible to erosion,
the analytical hierarchy process (AHP) technique devel-
oped by Saaty (1980) was used. This methods has the
capability of integrating expert knowledge, field informa-
tion, and relative statistics together. AHP is a semi-
quantitative, multi-criteria decision support technique
which is used to generate high quality and precise
decisions through the application of the matrix based
pairwise comparison of the contributing factors which
determine the results of the phenomenon or the process
(Saaty 1990; Saaty 1994; Saaty and Vargas 2001). The
pairwise comparison will be carried out based on the
different ratings of each variable or feature classes on
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the basis of relative importance varying from 1 to 9.
Each value in the relative importance can be assigned to
variable or variable classes based on the subjective
judgement of relative importance. Relative weight of the
variables used in the matrices can be determined by
generations of eigenvectors and the consistency of the
variable can be assessed by calculating the consistency
index (CI) as given below (Saaty 1990) (Eq. 1):

(Amax-n)

="

(1)
where, A\n.x is the largest or principal eigenvalue of the
analysed matrix and n is the order of the square matrix.

This inconsistency index can also be expressed as
consistency ratio (CR) which determine the suitability of
individual parameters and their classes to be included in
the analysis and was given by the Eq. (2):

e

CR=—
RI

(2)
where, RI is the random index i.e. consistency index for
a random square matrix of the same size proposed by
Saaty (1980). The cut-off of the CR was fixed as less than
or equal to 0.1 so that if CR of the analyzed variable is
found to be higher than the cut-off, the variable will be
omitted from the analysis.

Preparation of terrain Erosion susceptibility zonation
(TESZ) map
In order to map the areas susceptible to terrain erosion
and classify them based on the severity and criticality of
risk, a number of distinct geo-environmental variables
were considered. The combined effects of multiple vari-
ables in terrain susceptibility were characterised through
the application of analytical hierarchy process (AHP)
based influence measuring technique, which is consid-
ered a powerful and supportive multiple criteria decision
making tool (Malczewski 1999; Yasser et al. 2013; Chen
et al. 2016b). Ten individual factors were used. They are:
slope, aspect, relative relief, LS factor, curvature, land-
forms, TWI, SPI, stream head density, and land use/land
cover (Fig. 3a-j). The contribution of each parameter in
the terrain susceptibility as a single unit and individual
feature classes in the parameters were determined by the
cross comparison matrices analysed through the AHP
and output rating was considered as the weight of each
parameter and their class. Table 1 shows the pairwise
comparison matrix, consistency ratio, and the weightings
of individual parameters, and their classes considered in
the analysis.

In all analysis which deals with terrain susceptibility,
the primary factor considered is the terrain slope, which
represents the inclination of the topography with
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reference to horizontal. Nature of the slope varies from
gentle to steep and this controls different geomorphic
processes such as erosion, transportation, and deposition
in relation to the rainfall-runoff characteristics of the re-
gion (Foumelis et al. 2004; Gémez-Gutiérrez et al. 2015;
Sangchini et al. 2016; Arabameri et al. 2018a). Gentle
slopes are expected to induce less terrain slips due to
low shear stresses (Lee et al. 2004). High slope values
show the highest susceptibility to erosion although verti-
cal terrain surfaces, and very high slopes having exposed
bedrock show less susceptibility to terrain erosion due
to less or nil soil cover (Dewitte et al. 2015; Rahmati et
al. 2017; Torri et al. 2018). In order to generate the
slope, hydrologically corrected (void filled) SRTM DEM
were used and the slope map generated shown a range
varies from 0 to 75°. Then the slope was reclassified into
the following gentle to very critical seven classes 0-5°,
5°-10°, 10°-15°, 15°-25°, 25°-35°, 35°-45°, and > 45° and
the relative percentage of area covered by individual
slope class shown high spatial variation. Among the
slope classes, a large percentage of the study area falls
within the slope class 15°-25° (31%), followed by 10°-15°
(20%), and 25°-35° (17%). It was also observed that, the
higher slope classes in the range of 35-45° and > 45° oc-
cupied comparatively reduced areas of 9% and 1% only
respectively. Seven slope classes were ranked by attribut-
ing factor scores from 1 to 9 to generate the pairwise
matrix. The attribution was based on the assumption
that there is a regular increase in risk across all the slope
classes. Considering the influence of the slope over the
terrain stability, relative weightages were then calculated
and these vary from 0.0274 to 0.2432 (Table 1). Higher
ratings are noted in areas having a slope higher than 35°
in the study area.

Slope aspect indicates the direction of the terrain slope
with respect to north and varies from -1 to 359°, in
which the negative value represents flat surface (Prasan-
nakumar et al. 2011). Aspect of the terrain have direct
and indirect control over terrain processes and condi-
tions such as soil moisture, vegetation cover, and soil
thickness by exposing the surface to sunlight and or
heavy rain (Clerici et al. 2006; Meten et al. 2015). In
most of the landslide and gully erosion modelling stud-
ies, slope aspects is taken as an important variable (Reis
et al. 2012; Pourghasemi et al. 2013b; Rahmati et al.
2016; Sangchini et al. 2016; Menggenang and Samanta
2017; Othman et al. 2018). In the present research, a
slope aspect map was generated from the elevation
surface and classified into nine classes which are: flat, N,
NE, E, SE, S, SW, W, and NW based on the orientation
i.e. which way the terrain is facing. Considering the area
distribution of the individual aspect class in the study
area, most of the slope aspects classes cover similar
areas (13%) except flat terrain which is very rare (0.30%).
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Table 1 Pair-wise comparison matrix, ratings, and consistency ratio of the variables classes and individual variables used in the

present study

Variables Classes 2 3 4 5 6 7 8 9 10 Rating / weights
Slope 0-5 /3 14 50 7 1/8  1/9 0.0270
5-10 1 3/4 3/5 3/7 3/8 3/9 0.0810
10-15 1 4/5  4/7  4/8  4/9 0.1081
15-25 1 5/7  5/8 5/9 0.1351
25-35 1 7/8 7/9 0.1891
35-45 1 8/9 0.2162
> 45 1 0.2432
Aspect Flat /2 12 /3 14 v5 /7 19 1/6 0.0256
N 1 1 2/3 2/4 2/5 2/7 2/9 2/6 0.0512
NE 1 2/3 2/4 2/5 27 29 2/6 00512
E 1 3/4 3/5 3/7 3/9 3/6 0.0769
SE 1 4/5  4/7 4/9  4/6 0.1025
S 1 5/7 5/9 5/6 0.1282
SW 1 7/9 7/6 0.1794
W 1 9/6 0.2307
NW 1 0.1538
Relative relief <100 /3 15 /7 1/9 0.04
100-200 1 3/5 3/7  3/9 0.12
200-300 1 5/7 5/9 02
300-400 1 7/9 0.28
> 400 1 0.36
Slope length and Steepness (LS) 5 173 1/7 19 0.05
10 1 3/7  3/9 0.15
15 1 7/9 035
>15 1 045
Curvature Concave 9 9/7 0.5294
Flat 1 1/7 0.0588
Convex 1 04117
Landforms Deeply incised stream 2/4 2/9 2/ 206 2/3 2/5 2/2 2/3 2/7 00476
Midslope drainages 1 4/9 41 4/6  4/3 4/5 4/2  4/3  4/7 00952
Upland drainages 1 9 9/6 9/3 9/5 9/2 9/3 9/7 02142
U shaped valleys 1 76 13 /50 12 1/3 1/7 00238
Plains 1 6/3 6/5 6/2 6/3 6/7 01428
Open slopes 1 35 3/2 3/3 3/7 00714
Upper slopes 1 5/2 5/3 5/7 01190
Local ridges 1 2/3 2/7 00476
Midslope ridges 1 3/7 00714
Mountain tops 1 0.1666
Topographic wetness index (TWI)  Low (<5) 174 1/9 0.0714
Moderate(5-10) 1 4/9 0.2857
High (> 10) 1 0.6428
Stream power index (SPI) <0 /2 13 14 1/6 1/8  1/9 0.0303
0-1 1 2/3  2/4 2/6 2/8 2/9 0.0606
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Table 1 Pair-wise comparison matrix, ratings, and consistency ratio of the variables classes and individual variables used in the

present study (Continued)

Variables Classes T2 3 4 5 6 7 8 9 10 Rating / weights
1-2 1 3/4  3/6 3/8 3/9 0.0909
2-3 1 4/6  3/8 4/9 01212
3-4 1 6/8  6/9 0.1818
4-5 1 8/9 0.2424
>5 1 02727

Stream head density Low (< 15) T4 1/9 00714
Medium (15-20) 1 4/9 0.2857
High > 20 1 0.6428

Land use/land cover (LULC) Water T /8 2 12 19 19 1N 0.0294
Upper montane forest 1 78 12 /1 12 19 19 N 0.0294
Secondary forest 1 82 81 82 89 89 8/ 0.2359
Primary forest 1 21 2/2 2/9 2/9 211 0.0588
Pebble cobble 1 172 1/9 19 /1 0.0294
Paddy 1 2/62/9 2/ 0.0588
Mixed agriculture 1 9/9 9N 0.2647
Exposed soil (barren) 1 91 0.2647
Artificial surface 1 0.0294

Consistency ratio (CR): < 0.0001

Variables(as single unit) Slope 1 81 84 85 83 82 84 87 86 89 01633
Aspect 1 74 /5 /3 12 /4 17 16 1/9 0 00204
Relative Relief 1 4/5  4/3 472 4/4  4/7  4/6 4/9 00816
Slope length and steepness 1 53 5/2 54 5/7 56 5/9 0.1020
Curvature 1 32 3/4 3/7 3/6 3/9 00612
Landform 1 2/4 2/7 2/6 2/9 00408
TWI 1 4/7 4/6  4/9 00816
SPI 1 7/6 7/9 01429
Stream head density 1 6/9 0.1224
LULC 1 0.1837

Consistency ratio (CR): < 0.00003

NE facing slopes were also below average (10.70%). Before
applying the relative weightages to individual aspect class,
slope instability observed during the field visit was consid-
ered. During the field visit, it was noted that, west facing
slopes in general as well as southwest and northwest show
more incidence of slope failure and gully erosion than any
others. Therefore, while attributing the factor scores to
generate the pairwise matrix, higher scores were given to
slopes facing west, southwest, and northwest directions
and relative weightages or ratings were calculated which
vary in the range of 0.0256 to 0.2307.

Another important parameter which controls the ter-
rain stability is the change in elevation in the unit area
which is termed as relative relief. Terrains with higher
relative relief indicates higher runoff and less infiltration
and shows higher susceptibility to erosion (Raja et al.

2017). The relative relief of the study area was generated
from the digital elevation model using the neighborhood
range function available in the spatial analyst extension of
ArcGIS software by keeping the unit size of the area as 1
km?. The relative relief calculated for the study area ranges
from 46 m/km” to 692 m/km> and was then divided into
five classes which are: < 100 m/km?, 100-200 m/km?, 200~
300 m/km?, 300-400 m/km” and, >400 m/km®. Consider-
ing the area distribution of individual classes of relative re-
lief in the selected study area, the majority (95%) falls
within the three classes from 100 to 400 m/km” Within
this 95%, more than 43% of the total area has relative relief
in the range of 200-300 m/km” followed by 30% of the
total area with relative relief in the range of 100-200 m/
km? and 22% of the area in the range of 300400 m/km?. It
was noted that very low and very high relative relief zones
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(<100 m/km* and >400 m/km? cover significantly less
areas of 1% and 4% respectively only. Review of previous
works carried out in landslide and gully erosion modelling
which used the theme relative relief as a parameter indi-
cates higher potentiality of areas with high relative relief in
conditioning for erosion (Foumelis et al. 2004; Zhu et al.
2014; Pourghasemi et al. 2013a; Sangchini et al. 2016).
Based on this prior and proven information, in the present
research while attributing the factor scores to generate the
pairwise matrix, higher scores were given to relative relief
class having higher values and lower scores were assigned
to low relative relief class. The relative weightages thus
calculated varied from 0.040 to 0.36.

LS factor corresponds to the combined effect of slope
length and its steepness, which have direct bearing on
the erosion and the transportation potential of an area
(Pourghasemi et al. 2013b; Vijith and Dodge-Wan 2018).
An area with high slope and elongated nature has high
potential for generating runoff and this directly influ-
ences the development of rills in the terrain in response
to heavy rainfall (Haan et al. 1994; Panagos et al. 2015;
Correa-Muioz and Higidio-Castro 2017). Therefore, in
the present analysis the LS factor was considered and
generated from the digital elevation model through the
methodology proposed by Moore and Burch (19864,
1986b) using SAGA 2.1. The generated LS factor value
varies from 0 to 25 and was divided into four classes
which are: <5, 5-10, 10-15, and > 15 considering its
contribution to erosion susceptibility. Within the study
area of Sungai Patah and Sungai Akah watersheds, 50%
of the terrain has low LS values (<5) and 41% has LS
value between 5 and 10. Only 9% of the area has LS
value of 10-15 and only 1% has LS value over 15. Soil
and gully erosion modelling conducted by researchers in
various locations identified the role of higher LS factor
in initiating erosion and transportation of material from
a region downstream (Nekhay et al. 2009; Pourghasemi
et al. 2012; Shit et al. 2015; Arabameri et al. 2018a).
Based on this in the present research also, while assign-
ing the factor scores, more importance were given to
classes showing high LS factor values and relative
weightages were calculated which vary in the range of
0.05 to 0.45.

The topographic curvature used in the analysis repre-
sents the shape of the slope or topography which has
direct bearing on the erosion by either concentrating
runoff or dispersing it (Lee and Sambath 2006; Fischer
et al. 2012). Topographic curvature may show an up-
ward convex surface (positive curvature) or upwardly
concave surface (negative curvature), or it may be flat
(zero curvature) (Alkhasawneh et al. 2013). In order to
understand the influence of the shape of the surface
slope over terrain susceptibility, curvature was generated
from the DEM. Topographic curvature in the study area
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ranges from - 30 to + 32, i.e. from concave surfaces to
flat and convex surfaces. In the study area, the topog-
raphy consists of both concave and convex curvature
surfaces which together cover 94% of total area whereas
flat areas only cover 6%. This is due to the complex and
highly undulating nature of folded sedimentary rocks
within the study area. Considering the shape of the land
surface, both concave and convex surfaces possess sus-
ceptibility to erosion. But in the study area, during the
field visits, it was noted that compared to convex surface
the more gullies are observed in a concave surfaces. Fur-
ther, while considering the previous studies reported
from other parts of the world, most studies marked con-
cave surfaces as more vulnerable to gullying and erosion
(Pourghasemi et al. 2012; Meten et al. 2015; Youssef
2015; Raja et al. 2017). Therefore, while assigning the
factor scores, more importance was given to concave
curvature than convex by attributing higher scores and
the calculated ratings are 0.0588 (flat), 0.4117 (convex),
and 0.5294 (concave).

In order to produce a reliable terrain erosion suscepti-
bility map, the specific landforms present in the study
area needs to be included in the analysis. Landforms
controls many spatial topographic erosional and deposi-
tional processes and was an integral part of geomorpho-
metry (Seif 2014). Surface runoff, soil moisture
distribution, vegetation characteristic, and even the
water quality are influenced by the specific landforms
(Mokarram et al. 2015). Therefore in the present re-
search, the topographic position index based landform
classification proposed by Weiss (2001) was selected to
generate the landforms using digital elevation model.
Topographic position index analysis identified ten land-
forms in the Sungai Akah and Patah area. They are
deeply incised streams, midslope drainages, upland
drainages, U-shaped valleys, plains, open slopes, upper
slopes, local ridges, midslope ridges, and mountain tops.
Within the study area, 39% of the total area is covered by
deeply incised streams whereas mountain tops cover 30%.
Besides these, local ridges (12%), upland drainages (10%),
U-shaped valleys (4%), and upper slopes (3%) are also
present. The remaining three landform classes (midslope
drainages, open slopes, midslope ridges, and plains) cover
less 1% of the total area only. Later, by considering the
relative importance of individual landforms over the ter-
rain susceptibility to erosion as explained in the previous
studies conducted to model the landside susceptibility in
various regions (Costanzo et al. 2012; Tien Bui et al. 2012;
Oh and Lee 2017), factor scores were fixed and ratings
were calculated. Calculated ratings vary from 0.0142
(Plain) to 0.2142 (Upland drainages).

The parameters discussed above all contribute to a
certain extent to increase the susceptibility of the terrain
to erosion. In addition, the contribution of water flow in
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the terrain to enhance the susceptibility was also consid-
ered by means of topographic wetness index (TWI), de-
rived from the digital elevation model. TWI considers
the upslope contributing area and its slope to quantify
the steady state wetness and water flow across the region
(Pourghasemi et al. 2013a). TWI generated for the study
area shows values in the range of 1 to 25 which have
been divided into three classes which are: <5, 5-10,
and > 10. Considering the wetness potential of the area
through TWI classes, 30% of the total study area was
found to have low wetness index (TWI <5) whereas
most of the area (62% of the total area) shown moderate
wetness index (5-10), while remaining 8% of the area
has high TWI values (> 10). To take into account differ-
ent level of contribution of TWI to terrain erosion sus-
ceptibility, landslide, and gully erosion susceptibility
studies carried out in different locations were considered
(Wang et al. 2015; Chen et al. 2017; Arabameri et al.
2018b). It was noted that, in most studies high TWT has
high impact on erosion and in the present study, the
relative scores of individual TWI classes were assigned
based on the TWI values i.e. lower score were attributed
to low TWI and vice versa. The calculated weightages
varies from 0.0714 (TWI<5) to 0.6428 (TWI > 10).

Another parameter is stream power index (SPI), which
estimates the capacity of streams to potentially modify
the geomorphology of an area through gully erosion and
transportation. SPI is the measure of the erosive power
of flowing water by considering the relationship between
discharge and specific catchment area (Chen and Yu
2011; Pourghasemi et al. 2013b). SPI highlights areas in
which overland flow has higher erosive power in the
catchment (Wilson and Gallant 2000). This makes the
use of SPI a significant parameter of interest in erosion
and terrain susceptibility modelling. SPI was calculated
for the study area using the stream power index module
available in SAGA 2.1 software based on the digital
elevation model as input data. SPI of the Baram study
area varies from — 13 to 7 indicating the differential ero-
sive power of the streams in the region. Higher values
indicate the likely overland flow paths during storms or
severe erosive rainfall pointing to potential areas for
gullying or other areas susceptible of erosion. The SPI
map prepared was reclassified into seven classes which
are: <0, 0-1, 1-2, 2-3, 3-4, 4-5, and > 5. Most of the
study area (63%) showed SPI value less than 0. High SPI
represent areas where high slopes and flow accumula-
tions exist which indicate enhanced with erosive poten-
tial (Gomez-Gutiérrez et al. 2015; Arabameri et al.
2018a). Considering the SPI values and their contribu-
tion towards terrain susceptibility and gullying, the
relative scores were added to each class in a simple pro-
gression and rating was calculated and the rating varies
in the range of 0.0303 to 0.2727.
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Another parameter of interest is stream head density
which indicates the number of stream origin points per
the unit area. Analysis of channel head locations can
provide insight into the controls on drainage density as
well as the response of landscapes to climatic change
and indication about the rate of susceptibility of that ter-
rain (Wadge 1988; Montgomery and Dietrich 1989; Lin
and Oguchi 2004). In the present study, the stream head
density was calculated by extracting the starting points
of all 1st order streams in the study area. Using the
density function available in the spatial analyst extension
of ArcGIS, stream head density was calculated for 1 km?
and the calculated density values were found to vary
from 8 to 25N/km? Reclassification of stream head
density in to three classes which are: low (<15 N/km?),
medium (15-20 N/km?), and high (>20 N/km?) was
then used for the calculation of individual weights. It was
noted that, 21% of the total study area has low stream
head density whereas 71% of the area has moderate dens-
ity, and remaining 7% of the area only has high density.
Areas having high stream head density is more susceptible
to erosion, especially by the development of gully head
and continuous erosion downstream. Based on the density
classes and its impact on terrain erosion susceptibility, the
relative scores of the stream head density classes were
assigned. Further, ratings were calculated and it varies in
the range of 0.0714 to 0.6428 indicating varying contribu-
tion towards the terrain susceptibility.

In erosion susceptibility analysis, the existing land use/
land cover of the area under consideration also plays a
vital role by providing information about the condition
of vegetative protection against erosion and many re-
searchers found land use/land cover to be a dominant
variable in erosion susceptibly (Dai and Lee 2002; Glade
2003; Begueria 2006; Leh et al. 2013; Galve et al. 2015;
Mandal and Mandal 2018; Vuillez et al. 2018; Abdulkar-
eem et al. 2019). It is also one of the key factors under
anthropogenic influence ie. reflective of human disturb-
ance of vegetation cover due to logging, clearing for roads,
and/or agriculture. In the present study, the land use/land
cover map of the area was derived from Landsat 8 OLI
images acquired on 28th March 2015, through the super-
vised classification with extensive ground truth points
from field observations. The segmentation of Landsat
image into classified land use/land cover map has identi-
fied and mapped the following land use/land cover classes
in the area: water, secondary forest, primary forest, mon-
tane forest, mixed agriculture, paddy, exposed soil
(barren), artificial surfaces, and pebbles, cobbles in river
beds. The supervised classification indicate that more than
56% of the total area was covered by secondary forests and
27% of the area was covered by primary forests. It was also
noted that, land use activities like mixed agricultural land
and exposed barren land, which alter the terrain condition
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in the region, cover 8.8 and 1.8% of the total area respect-
ively. The other land use/land cover classes together cover
less than 5.5% of the total area, in which upper montane
forests cover 3.35% of the area. Further, when determining
the relative influence of individual land use/land cover
classes in terrain susceptibility, previous study which detail
the influence of individual land use classes in soil erosion
vulnerability of the area was taken into account (Vijith
and Dodge-Wan 2018). For the AHP, the weight was
calculated for individual land use/land cover classes based
on the relative importance assigned to each class and
varied in the range of 0.0294 to 0.2647. Among the differ-
ent classes, the exposed barren land, mixed agriculture
acquired the highest rating of 0.2647 followed by second-
ary forest (0.2352) whereas the upper montane forest and
artificial surface showed the lowest weight (0.0294).
Higher weight shown by the exposed barren land, mixed
agriculture, and secondary forest in soil erosion study
(Vijith et al. 2018a, 2018b) indicates the strong influence
of these land use classes on terrain susceptibility.

In order to produce the terrain erosion susceptibility
zonation (TESZ) map, the ranking of individual parame-
ters was carried out to assign their relative contribution
before assigning the calculated weight to each parameter
classes. The parameter ranking indicated that land use/
land cover is the highest influencing parameter with a
rating of 0.183 followed by slope (0.163), stream power
index (0.142), and stream head density (0.122). The
other parameters such as aspect, relative relief, LS factor,
curvature, landforms, and topographic wetness index
were found to have less influence. Reliability of each par-
ameter to be included in the analysis was determined by
examining the consistency ratio (CR) and it was noted
that all the parameters shown CR below the proposed
cut-off of 0.1, so none were omitted from the analysis.
Finally, the weights calculated for individual parameter
classes were assigned to the respective parameters to
produce the weighted maps and using the raster calcula-
tor option of the spatial analyst, individual themes were
integrated to produce the terrain erosion susceptibility
index (TESI) map using the equation (Eq. 3):

Terrain erosion susceptibility index (TESI) =
wtSlope * 0.163 + ,tAspect * 0.020
+ wtRelative relief * 0.081 + LS factor * 0.102
+ witCurvature * 0.061 + ,:Land forms * 0.040
+ wtTWI % 0.081 4 ,,+SPI * 0.142
+ wtStream head density * 0.122
+ weLand use/land cover x 0.183

(3)

where, . is the relative weights of classes in individual
variable.
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Result and discussion

Ten geo-environmental variables which are potentially
responsible for changing the stability of the terrain ren-
dering it more susceptible to erosion were considered
quantitatively to assess the susceptibility of the forested
region of Sarawak to erosion using the AHP technique.
Among the ten variables used to generate the terrain
erosion susceptibility index (TESI) map, the variables
such as land use/land cover, slope, stream power index,
stream head density, and slope length and steepness
factors shown maximum influence (> 0.10) followed the
relative relief and topographic wetness index (0.08).
Other variables such as curvature (0.06) and landform
(0.04) shown moderate influence, whereas aspect was
found to be the lowest influencing variable with a rank
of 0.02. Even though, the variable ranks differ, the selec-
tion of the variables in the present analysis are found to
be optimum by showing the CR less than the cut-off
value (0.00003). Besides this, the weight factor calculated
for the individual variable classes indicates a varying de-
gree of influences within the parameter and between the
parameters. It was also noted that the relative weighting
of variable classes indicates the variability of influences.
Among the variables considered, the land use/land cover,
terrain with slope >25° having west, southwest, and
northwest orientations, relative relief > 300 m/km? high
LS factor, and concavity, having high TWI, upland drain-
ages and mountain top landforms, high stream head
density are showing high relative weights among the
classes and contributing more to the terrain susceptibil-
ity. The integration of weighted variables in the raster
calculator resulted terrain erosion susceptibility index
(TESI) map showing the susceptibility ranges from 0.07
to 0.34 indicating spatial distribution of different degree
of susceptibility to erosion (Fig. 4a). The TESI map gen-
erated shows varying distribution of higher and lower
susceptibility indexes all over the area without showing
any particular pattern, which make it difficult to identify
and differentiate the regions which showing nil or low
susceptibility and very high susceptibility.

In order to understand the spatial extent of different
severity of erosion susceptibility, the TESI map was re-
classified into five discrete classes based on the suscepti-
bility index values namely nil, low, moderate, high, and
very high zones (Fig. 4b). The reclassification of the TESI
to terrain erosion susceptibility zonation (TESZ) map
facilitated the calculation of areal extent of different sus-
ceptibility zones. The areas falling under each erosion
susceptibility class are given in Table 2 and shown in
Fig. 5. The final TESZM showed that 10.3% of the study
area is categorised as having very high susceptibility to
erosion and these areas appears to be distributed differ-
ent places in the region. In addition, high erosion sus-
ceptibility zones occupy 14.9% whereas moderate and
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Fig. 4 a Terrain erosion susceptibility index (TESI) maps and b Classified terrain erosion susceptibility zonation (TESZ) map

low susceptibility zones covers 25.8 and 27.1% of the
area respectively. It was also noted that 17.47% of the
study area is not prone to erosion. Besides this, 4% of
the area was not included in the final analysis as there is
no data in these zones due to thick cloud and cloud
shadow on satellite image. An attempt has been made to
understand the spatial characteristics of the erosion sus-
ceptibility zones by overlying the TESZ with the exagger-
ated terrain model. It was found that the higher erosion

susceptibility zones mostly occur in the flanks of the
mountains rather than in the valleys. In addition, in
some places these zones show linear patterns which can
be linked directly with the road structure and skidder
trails. For the development of roads in the area, the con-
tinuity of hills with concave or convex slopes has been
removed by the toe cutting and this will increase the
susceptibility to erosion and lead to the development of
soil slumps triggered by the heavy rainfall. The clustered
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Table 2 Terrain erosion susceptibility classes derived from the reclassification of TESI

Terrain erosion susceptibility classes Area (km?) Area (%) Probability of terrain erosion
Nil 367.84 1747 No chance of erosion, mostly low lying areas.
Low 57201 27.17 Very low probability. Mostly affected by the
run-off from the higher elevation
Moderate 54477 25.88 Medium probability, may directly involve in
erosion or affected as part of falling from the top
High 31322 14.88 High certainty of erosion either as slide or gullying.
Need attention in such areas crossing road sections.
Very High 217.31 10.32 Very high certainty of erosion either as slide or
gullying. To be monitored during the heavy rainy seasons.
No data 89.85 4.27 No data is available due to cloud and shadow in the

image. Not considered in the analysis

nature of the higher erosion susceptibility indicates the
logging activity and shifting cultivation, which exposes
the terrain by removing the protective tree cover.

Rainfall distribution

Though different geo-environmental variables make the
terrain susceptible to erosion, the amount and intensity
of rainfall which falls in an area acts as the triggering
mechanism which can initiate movement of soil, debris,
and other overburden downstream. In most studies,
rainfall distribution is included as a theme to statistically
model the land susceptibility to erosion (Sangchini et al.
2016). In the present research, rainfall distribution in the
study area was considered separately and analysed to
identify the areas with high possibility of terrain erosion
susceptibility. Therefore, 5 year rainfall data were
collected from the Department of Irrigation and Drain-
age (DID) Malaysia corresponding to four rain gauges
located in the study area and six around the area. Mean
monthly rainfall distribution and 5 year mean monthly,

and annual rainfall is shown in Fig. 6. It was noted that
mean monthly rainfall varies between 238 mm (June) to
532 mm (November) with long term mean monthly and
annual rainfall of 352mm 4227 mm respectively. A
spatial distribution map was generated by considering
the mean annual rainfall calculated for each rain gauge
for use in further analysis (Fig. 7). Mean rainfall ranges
between 3654 to 4862 mm with higher rainfall generally
located in southwest part of the study area, especially
between the rain gauges Long Naha’ah and Long Akah
whereas comparatively lower rainfall is noted in north-
ern and north-eastern part of the study area.

In order to assess the contribution of rainfall to terrain
susceptibility leading to slope failure, 200 random
(unconditional and unstratified) points (pixel size 30 x
30m) were generated within the study area boundary
and mean annual rainfall, TESI, and TESZ values corre-
sponding to each point were extracted. The extracted
values of TESI and TESZ were compared by linear re-
gression with mean annual rainfall to study the possible
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factor in increasing terrain erosion susceptibility, at a
specific local scale (pixel size 30 x 30 m area), the higher
amount of rainfall received in parts of the region does
not appear to significantly influence the local site
specific terrain susceptibility. However, other geo-
environmental variables considered play more significant
roles in rendering the terrain more susceptible to ero-
sion in specific local areas.

Conclusion

The characteristic probability of erosion proneness of a
sample catchment with regenerated and logged tropical
rain forest region in Sarawak, northern Borneo, was suc-
cessfully carried out in the present study using raster
GIS and AHP technique. Terrain variables derived from
the digital elevation model such as slope, aspect, relative
relief, LS factor, curvature, landforms, TWI, SPI, stream
head density, and the land use/land cover interpreted
from the satellite images were integrated in the raster
based GIS environment after deriving the determinant
ranking and weights for the variables and variable clas-
ses. The generation of rankings and weightages for the

variables considered in the analysis through the AHP
technique facilitated the identification of the most cru-
cial variables which render the terrain more susceptible
to erosion. Though all these variables were found to be
contributing to erosion susceptibility to various degrees,
the determination of ranks through relative ratio high-
lights that land use/land cover, slope, stream power
index, stream head density, and LS factor are the most
crucial variables. In the study area, the places which are
exposed (barren land) with concave slopes having slope
exceeding 25° and facing west, southwest, and northwest,
with relative relief higher than 300 m/km? and high LS
factor, TWI and stream head density are found to be the
most vulnerable to erosion. These areas are identified
via the TESI and TESZ maps.

TESZ map generated by the reclassification of TESI
into five distinct groups show the spatial pattern of ero-
sion susceptibility in terms of its severity. It was found
that 10 and 14% of the total area comes under the very
high and high erosion susceptibility zones. The higher
susceptibility was found to be characteristic of high ele-
vated hills and slopes which undergo rapid changes.
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However, areas with nil and low potential of erosion sus-
ceptibility together constitute 44% and the moderate
susceptibility zones occupy 25% of the total study area.
Considering the influence of rainfall in the region, the
entire study area receives what can be considered high
tropical rainfall. Analysis of 200 randomly distributed
pixel sized area (30 m x 30 m) suggests that at local scale
rainfall is not strongly correlated with erosion suscepti-
bility. The field observations and the erosion susceptibil-
ity map indicates that the root causes of the terrain
susceptibility are modification of land use and the devel-
opment of logging roads, and skidder trails. Barren areas
reduce the stability of the terrain and particularly when
combined with other factors such as slope, LS factor.
Along with this, the high amount of rainfall recorded
throughout the region induces movement of unsup-
ported and toe-cut slopes to move downstream. The
findings of the present study give a better understanding
of the region in terms of erosional characteristics. The
findings can be used for planning of new roads, settle-
ments by developing and implementing erosion reduc-
tion and terrain protection measures.
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