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Abstract

Landslide is an important geological hazard in the large extent of geo-environment, damaging the human lives and
properties. The present work, intends to identify the landslide susceptibility zones for Darjeeling, India, using the
ensembles of important knowledge driven statistical technique i.e. fuzzy logic with Landslide Numerical Risk Factor
(LNRF) and Analytical Hierarchical Process (AHP). In the study area, 326 landslides have been identified and a
landslide inventory map has been prepared based on these landslides. The landslide inventory map has considered
as the dependent factor and the geo-environmental factors like rainfall, slope, aspect, altitude, geology, soil texture,
distance from river, lineament and road, land use/ land cover, NDVI and TWI have been considered as independent

factors. Landslide susceptibility maps were prepared based on the Fuzzy- Landslide Numerical Risk Factor (LNRF)
and Fuzzy- analytic hierarchy process (AHP) methods in a GIS environment. According to the results of LNRF and
AHP based fuzzy logic 34 and 22% areas are highly susceptible to landslide in this district. The landslide maps of
both models have been validated through ROC curve and RMSE. The areas under curves are 91% (for Fuzzy-LNRF)
and 90% (for Fuzzy-AHP) and RMSE values of these models are 0.18 and 0.14 which are indicating the good
accuracy of both models in the identification of landslide susceptibility zones. Moreover, the Fuzzy-LNRF model is
promising and sufficient to be advised as a method to prepare landslide susceptibility map at regional scale.
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Introduction

The mountainous areas of the world are frequently af-
fected by the occurrences of the landslide because of
high energy with variability and instability of masses
(Gerrard 1994). From the environmental point of view,
different kind of problems such as loss of soil fertility,
acceleration of deforestation rate etc. may be caused by
the landslides (Van Eynde et al. 2017). Most of the
mountainous regions of India are characterized by the
landslide disaster. A number of avalanche zones in the
Indian Himalayan region are prominent, e.g. Jammu
Kashmir, Himachal Pradesh, Kumayun, Darjeeling and
Sikkim and North-eastern hilly states (Bhandari 2004).
Landslide causes loss of property far greater than the
any natural disaster (Turner and Schuster 1996; Garcia-
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Rodriguez et al. 2008). Probably this rate of property
damage will become more faster in the upcoming time
in parity with the gradual development of urban centers,
economic and rising regional rainfall due to climatic
change in the landslide prone areas (Turner and Schus-
ter 1996). Landslide occurrence is a significant barrier to
the development in Darjeeling district. In Darjeeling dis-
trict, landslides mainly take place due to heavy Mon-
soonal rainfalls and seismicity (Panikkar and
Subramanyan 1996). The Darjeeling district had been
experienced major landslides in July—August, 1993, May
2009 and September 2011 (Sarkar 1999). Massive rain
caused landslides at Darjeeling town, Mirik, Kurseong
and Kalimpong during June—July, 2015 and induced the
loss of properties and lives. Reduction of effect of land-
slide can be possible only with a comprehensive know-
ledge about the probability of occurrence, character and
magnitude of landslide in an area. Therefore, delineation
of landslide vulnerable regions is indispensable for
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carrying out safer alleviation programs, and future plan-
ning of the area (Fan et al. 2019). In the present paper
the main thrust has been given to delineate the landslide
susceptible zones and chalk out suitable method.
Landslide is the major hazardous phenomenon which
sometimes causes loss of human lives and properties.
Therefore, any environmental factor may cause landslide
when soil resistance power is lower than the shear force
(Refahi 2000; Bouma and Imeson 2000). For landslide
hazard evaluation several qualitative and quantitative
methods have been used (Aleotti and Chowdhury 1999;
Reichenbach et al. 2018). According to the qualitative
method, the expert can evaluate the landslide suscepti-
bility zones in his own opinion. The expert also can as-
sess the vulnerable areas on the basis of similar
geological and geomorphological character using the
landslide inventory maps or existing landslide areas
(Ayalew and Yamagishi 2005). The multi-criteria deci-
sion approach (MCDA) is an important way for indenti-
fying the potential landslide areas using proper database.
GIS based MCDA has been considered as the powerful
techniques and procedures for evaluating, designing and
accuracy judgments’ of the results (Feizizadeh and Blas-
chke 2011, 2013). The present study has followed the
GIS based MCDA techniques like Fuzzy-Landslide Nu-
merical Risk Factor (LNRF) and Fuzzy-AHP for the
landslide susceptibility mapping. Several other re-
searchers applied Fuzzy-AHP and LNRF. Torkashvand
et al. (2014) applied the Landslide Numerical Risk Factor
(LNRF) model using GIS in East of the Sabalan volcanic
mass region in Iran. Mokarram and Zarei (2018), Feizi-
zadeh et al. (2014), Mosavi et al. (2017), Hejazi (2015),
Mirnazari et al. (2015) and Hembram and Saha (2018)
used Fuzzy-AHP model for their work and they got
fruitful result for susceptibility mapping. Various statis-
tical methods have been used by the researchers for ana-
lyzing the spatial pattern of landslides and preparing the
landslide susceptible map such as logistic regression
(Zézere et al. 2017; Budimir et al. 2015), hierarchical ap-
proach (Youssef et al. 2014), statistical index (Dou et al.,
2015), conditional analysis (Pourghasemi et al. 2012),
weight of evidence Pradhan and Lee (2010). In the re-
cent years, different machine learning techniques have
also been used by some scholars for mapping the land-
slide disaster like decision tree (Pradhan 2013), random
forest (Dou et al. 2019), artificial neural network Prad-
han and Lee (2010), support vector machine (Tien Bui
et al. 2012) etc. For identifying the landslide susceptibil-
ity zones, they used some important factors such as the
elevation, lithology, slope, land use, river, topographical
wetness index, aspect, road, fault, and precipitation
maps. The rationale of this work is to identify the land-
slide susceptible areas using the ensemble models that
are fuzzy- LRNF and Fuzzy-AHP of Darjeeling district
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and compare with them which have not been used in
this district previously. The main advantage of ensemble
of fuzzy logic and LRNF is that we can use both expert
knowledge as well as statistical method for predicting
landslide susceptibility using various causative factors.

In this study, remote sensing data along with meta
data have been used to outline the landslide susceptibil-
ity areas for the Darjeeling District. Geo-environmental
factors such as rainfall, slope, aspect, altitude, geology,
soil texture, distance from river, distance from linea-
ment, distance from road, land use/ land cover, normal-
ized difference vegetation index (NDVI) and
topographical wetness index (TWI) have been taken out
to facilitate the quantification of landslide. Fuzzy-LRNF
and Fuzzy-AHP have been applied considering the ex-
tracted database. Using the LRNF models, the fuzzy
membership value has been calculated and thereafter,
using the fuzzy gamma operator the membership values
of parameters have been assembled for producing the
landslides susceptible map of Darjeeling district. Simi-
larly using the Fuzzy-AHP method, another map has
also been produced. Finally, the maps have been verified
and compared using known landslide locations based on
ROC and RMSE quantitative validation methods. The
main novelty is that the first time knowledge driven
technique (Fuzzy logic) has been assembled with LRNF
in this work to delineate the landslide susceptible zone
of Darjeeling district and compared with the Fuzzy-AHP
method. Moreover, according to the previous literatures
so many researchers used LRNF and AHP method for
mapping the landslide susceptibility but not a single re-
searcher has used ensemble of fuzzy logic and LRNF
model for predicting the spatial landslide probability and
compared this ensemble method with fuzzy-AHP.

Study area

The Darjeeling district is located in the northernmost
part of the West Bengal in India. It is an important
mountainous part of the eastern Himalaya. Geographic-
ally the study area is extended between the latitudes
26°27" to 27°13"N and longitudes 87°59"E-88°53"E.
The study area is covered with an area of 3149 sq.km
(Fig. 1). According to the census of 2011, the total popu-
lation of the district is 18, 46,823 with 9, 37,259 males
and 9, 09,564 females. The population density of the dis-
trict is 586 person/ km” (District Statistical Handbook
2013). The number of rural households and the urban
households of Darjeeling district was 212000 and 89584
in 2001, but these have increased to 236000 and 154540
in 2011 respectively (District Statistical Handbook 2011).
The total length of national highway, state highway,
major district road and other ordinary district road were
100, 80, 37 and 516 km respectively (District Gazetteer
of Darjeeling District 1980). But the length of national
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Fig. 1 Location map of study area showing district Darjeeling, India (a), and the location of 326 landslides (b)




Roy and Saha Geoenvironmental Disasters (2019) 6:11

highway, state highway and main district highway have
increased to 111, 191 and 79 km respectively in 2011.
The total length of surfaced and unsurfaced roads are
3696.54 km and 1652.51 km approximately in 2013-14.
The characteristics of both plain and mountainous top-
ographies exit in this study area. The altitude of the
study area ranges from 15m to 3602 m from mean sea
level and the slope from 0° to 80° approximately. The
major portion of the study area is covered with Triassic
rocks. The soil character of the study area is varied from
one region to another region. The study area receives
huge amount of rainfall in the monsoon season. The
average annual rainfall of the study area is about 3051
mm. The major rivers of the study area are Mahananda,
Tista, Mechi, Balason, Jaldhaka, Rammam and Rangit,
which are flowing from northern part. The district has
some reputed eco-tourism sites and pilgrimage sites
namely like Tiger Hill, Rock Garden, Mahakal Temple,
Dhirdham Temple, Batasia Loop, Ghoom Monastery
and Happy Vally Tea Garden, etc. Historically, Tea Plan-
tation and Cinchona are the main sources of livelihood
in the Darjeeling district. The community of the study
area depends on the horticulture, tourism, and forestry.
Siliguri is the major town of the study area which is fa-
miliar with ‘gate way’ of eastern India.

Materials and methodology

Data sources

For the fulfillment of the present work, various import-
ant data have been collected from different sources e.g.
rainfall and temperature data from Indian Meteoro-
logical Department, population data from District
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Statistical Handbook, Census of India 2011, drainage
and road networks from Open series Topographical
Sheets (2015), images and ASTER DEM from USGS
Earth Explorer, Soil map from National Bureau of Soil
Survey & Land use Planning and Geological map from
Geological Survey of India. The summery of the proce-
dues followed is depicted in the flowchart (Fig. 2).

Software used

To predict the landslide potential areas, the thematic
layers of selected geo-environmental parameters namely
rainfall, slope, elevation, aspect, geology, soil texture, dis-
tance from lineament, distance from river, distance from
road, natural differential vegetation index (NDVI) and
TWI have been prepared with the help of ArcGIS 10.3.1,
ENVI 4.7, GEOMATICA and the mathematical calcula-
tions have been done with the help of SPSS softwares.

Preparation of landslide inventory map

The landslide inventory map is the vital part for analyz-
ing the landslide susceptibility, hazard and risk (Guzzetti
et al. 2006). Pradhan and Lee (2009) and Pourghasemi et
al. (2012) prepared the landslide inventory map for iden-
tifying the landslide hazards zones. Van Westen et al.
(2000) remarked that the different data such as field in-
vestigations, historical landslide events and satellite
image analysis can be used to prepare the landslide in-
ventory map (Fig. 1b). In the present study, 326 land-
slides have been identified from Google earth imagery
and multiple field visits. The landslide inventory map
has been prepared in the GIS environment for
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Fig. 2 Flowchart of methodology used in this study

| Rainfall l—
I Slope |<—
| Altitude ko
St | | s -
Tolerance | Geology |<7
and VIF | Soil Texture -

| Distance FromRiver [«

| Distance From Lineament |<¥

| Distance FromRoad

| LuLC

| NDVI

—Twi

]




Roy and Saha Geoenvironmental Disasters (2019) 6:11

calculating the LNRF to predict the potentials landslide
susceptibility areas in this district.

Selection and Muliti-collinearity analysis of landslide
causative factors
There is a variety of geo-environmental parameters that
have been used by the various researchers for producing
the landslide susceptibility map. Still there is no standard
guideline for selecting the landslide predictors. In this
research 12 landslide causative factors i.e. rainfall, slope,
aspect, altitude, geology, soil texture, distance from river,
distance from lineament, distance from road, land use/
land cover, NDVI and TWI have been selected based on
the multi-collinearity analysis for mapping the landslide
susceptibility. In the landslide susceptibility analysis
aforementioned causative factors are widely used (Dou
et al. 2019; Arnone et al. 2016; Tien Bui et al. 2012).
Multi-collinearity analysis is an important way to ver-
ify the effectiveness of the landslide conditioning factors
(Saha 2017). For the present study, the collinearity test
of landslide determining factors has been done in the
SPSS software. A tolerance of less than 0.10 and and
variance inflation factors (VIF) 10 or above indicates
multicollinearity problems (Dormann et al. 2012; Wang
et al. 2008). In the present study, the values of tolerances
and VIF of all the selected parameters are less than 10%
(Table 1). So, there is no collinearity problem among the
selected landslide determining factors.

Preparation of thematic layers of selected parameters

The average annual rainfall data of last 5years, since
2012 to 2017 have been collected from Indian Meteoro-
logical Department. The thematic layer of rainfall has
been prepared with the help of the interpolation method
of IDW in GIS environment based on the average

Table 1 Collinearity statistics of landslide determining factors

SI. Parameters Collinearity statistics

No Tolerance VIF

1 Rainfall 0494 2024
2 Elevation 0638 1.566
3 Slope 0.894 1.118
4 Aspect 0.742 1.348
5 Geology 0.743 1.346
6 Soil 0.858 1.166
7 Distance from River 0.635 1.575
8 Distance from Lineament 0818 1.223
9 Distance from Road 0.527 1.898
10 LULC 0.833 1.201
" NDVI 0.804 1.243
12 TWI 0.884 1132
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annual rainfall data of last 5years (Fig. 3a). The slope
map of the study area has been prepared from ASTER
DEM with the help of 3D analyst tool of ArcGIS 10.3.1
software (Fig. 3b). In case of elevation and aspect, these
data layers have been prepared from ASTER DEM with
the help of 3D analyst tool of surface in GIS environ-
ment (Fig. 3¢, d).

The geology map has been prepared with the help of
digitations process from referenced geological map
which has been collected from Geological Survey of
India (Fig. 3e).

The thematic layer of soil texture has been generated
with the help of the digitations process form referenced
soil map which has been collected from National Bureau
of Soil Survey and Land Use Department (Fig. 3f). The
distance from river and distance from road maps have
been prepared with the help of Euclidian distance buffer-
ing tool in GIS environment (Fig. 3g, h). The lineament
of the study area has been extracted from Landsat 8 OLI
(Optical land Imager) image with the help of the ENVI
4.7 and GEOMATICA softwares. The distance from lin-
eament map has been prepared with the help of Euclid-
ian distance buffering tool of ArcGIS software 10.3.1
(Fig. 3i). The land use/ land cover (LULC) map has been
prepared from Landsat 8 OLI imagery with the help of
maximum likelihood classification method (Fig. 3j). The
normalized differential vegetation index (NDVI) has
been calculated from Landsat 8OLI image with the help
of image analysis tool in ArcGIS 10.3.1 software (Fig. 3k).
The thematic layer of TWI has been prepared from
ASTER DEM imagery in GIS environment using Eq. 1
(Fig. 31) which was suggested by Moore et al. (1991).

TWI = In <L> (1)

tanfs

Where, TWI = topographic wetness index, a is cumu-
lative upslope area draining through a point (per unit
contour length), B is the slope gradient (in degree). The
minimum, maximum, categorical classification and
methods of the selected geo-environmental conditional
factors have been done in GIS environment and men-
tioned in the following Table 2.

Fuzzy method

For the present study, the Fuzzy method has been as-
sembled with AHP and LNRF methods. The fuzzy maps
of selected parameters have been prepared with the help
of membership function (MF) tool in GIS environment.
The membership function (MF) values range between 0
and 1 (Zadeh 1965). The value 0 means that x is not a
member of the fuzzy set, while the value 1 means that x
is a full member of the fuzzy set. A sample of fuzzy set
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Table 2 Overview of selected parameters used for landslide susceptibility mapping
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Parameters

Ranges

Min

Max

q

lasses

Methods
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Table 2 Overview of selected parameters used for landslide susceptibility mapping (Continued)

Parameters Ranges

Min Max

Classes Methods

Land use/Land cover - -

NDVI -0.07 049

3.3.94-6.72
4.6.72-10.22
5.1022-16.49
1. Water bodies supervised classification
2. Vegetation

3. Fallow land

4. Agricultural land
5. Settlement
1.-0.07-0.12 Natural Break
2.0.12-0.17
3.0.17-0.23
4.0.23-0.29
5.0.29-0.49
1.1.95-737 Natural Break
2.737-853

3.853-9.76

4.9.76-11.70

5.11.70-1891

is shown in the following equation (Mcbratney and
Odeh 1997).

A = {x,pu(x)} for each xeX (2)

Where, p, is the MF (membership of x in fuzzy set A)
so that:

If x does not belong to A then p, = 0.

If x belongs completely to A then ps = 1.

If x x belongs in a certain degree to A then

0<p(x)<1

According to Eq. 3 MF was used for rainfall, elevation,
aspect, slope, NDVI, TWT [8].

0 x<a
Ha(x) = f(x) =< x -a/b-a a>x<b (3)
1 xzb

Where x is the input data and a, b are the limit values.

For geology, soil texture, distance from river, distance
from lineament, LULC and distance from road the fol-
lowing MF has been used [4].

0 x<a
a(x) =f(x) =< b -x/b-a a>x<b (4)
1 x=b

Fuzzy gamma operators
Several fuzzy operators exist for combining membership
functions such as AND, OR, SUM, PRODUCT and

GAMMA. In the present study, gamma operator has
been used for combining membership functions.
Fuzzy gamma operation has been calculated using egs.

(5).

My = (/’{sum)ky‘ (iuproduct) .l—y (5)

The exponent y, which is a number from <0, 1 > inter-
val, allows optimization of the membership combination.
Setting it to the extremes of the interval give either fuzzy
algebraic sum (y=1) or fuzzy algebraic product (y =0).
To perform fuzzy gamma operation, several gamma op-
erator (k) values, ie. 0.50, 0.70, 0.80, 0.90, 0.95, and
0.975 are there. In the present study, fuzzy gamma oper-
ator (k) value of 0.975 has been applied for producing
the landslide susceptibility map.

Landslide numerical risk factor (LNRF) model

Landslide Numerical Risk Factor (LNRF) model is an
important method for identifying the landslide hazard
zones especially in the mountain region (Gupta and
Joshi 1990). According to this model, the LNRF > 1 value
indicates that the geo-environmental factors have high
responsibility for the occurrences of landslide. The
LNRF <1 values represent that the geo-environmental
factors are more stable and have less effect in landslides
occurrences (Gupta and Joshi 1990). The LNRF has been
calculated through Eq. (6):
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Table 3 Computation of LNRF model on landslide determining Factors
Parameters Area Landslides Area LNRF Fuzzy
In Hectare In Percentage In Hectare In Percentage g‘eurgi)irssif:g
LNRF model
Rainfall (mm)
Very Low (1877.38-1991.97) 27659.36 8.78 0 0 0 0
Low (1991.97-2090.54) 24856.96 7.89 0 0 0 0
Moderate (2090.45-2167.44) 80967.44 2571 31.56 7.32 037 0.1
High (2167.44-2239.06) 11433578 36.31 294.58 68.29 341 1.00
Very High (2239.06-2333.96) 67080.46 213 105.21 2439 122 0.36
Slope (Degree)
Very Low (0-9.32) 101505.25 3223 14.5 336 0.17 0.1
Low (9.32-18.64) 58545.55 18.59 52.56 1218 0.61 039
Medium (18.44-27.34) 70795.02 2248 10331 2395 12 0.76
High (27.34-36.66) 5757195 18.28 13593 31.51 158 1.00
Very High (36.66-79.23) 26482.23 841 125.06 28.99 145 0.92
Altitude (m)
Very Low (15-422.93) 11588061 36.8 3517 8.15 041 0.16
Low (422.93-985.6) 71784.89 228 22401 5193 26 1.00
Medium (985.6-1576.4) 63320.09 20.11 81.46 18.88 0.94 036
High (1576.4-2279.73) 4447147 14.12 722 16.74 0.84 032
Very High(2279.73-3602) 19442.94 6.17 1851 429 0.21 0.08
Aspect
Flat (1) 163.37 0.05 0 0 0 0
North (0-22.5) 2031792 645 741 1.72 0.09 0.07
North-East (22.5-67.5) 39614.59 1258 2592 6.01 03 022
East (67.5-112.5) 39009.88 12.39 59.24 13.73 0.69 0.51
South-East (112.5-157.5) 44774.25 14.22 87.01 20.17 1.01 0.75
South (157.5-202.5) 45083.47 14.32 116.63 27.04 135 1.00
South-West (202.5-247.5) 39204.16 1245 70.35 16.31 0.82 061
West (247.5-292.5) 3244132 103 49.98 11.59 0.58 043
North-West (292.5-337.5) 35974.84 1142 12.96 3 0.15 0.11
North (337.5-360) 18316.21 582 1.85 043 0.02 0.01
Geology
Triassic 166113.98 52.75 302.86 70.21 3.51 1
Cenozoic 2320035 737 826 19.15 0.96 0.27
Pliocene-Pleistocene 1125898 358 45.89 10.64 053 0.15
Holocene 5815253 1847 0 0 0 0
Middle-upper Pleistocene 56174.15 17.84 0 0 0 0
Soil texture
Gravelly loamy 23549.04 748 68.11 15.79 0.79 046
Fine loamy Coarse Loamy 126713.02 40.24 113.51 2632 132 0.77
Gravelly loamy, Loamy Skeletal 38586.66 12.25 147.57 3421 1.71 1
Gravelly Loamy Coarse Loamy 120449.25 38.25 90.81 21.05 1.05 061
Coarse Loamy 5602.03 1.78 11.35 263 0.13 0.08
Distance from River (km)
0-042 km 9954245 3161 73.65 17.07 0.85 037
042-1.10 km 110752.04 35.17 199.89 46.34 232 1
1.10-1.66 km 64340.57 2043 11573 26.83 134 0.58
1.66-2.26 km 3292037 1045 42.08 9.76 049 0.21
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Table 3 Computation of LNRF model on landslide determining Factors (Continued)

Parameters Area Landslides Area LNRF Fuzzy
In Hectare In Percentage In Hectare In Percentage C;i:g?i;iig
LNRF model
2.26-4.33 km 734458 233 0 0 0 0
Distance from Lineament (km)
0-1.54km 81563.6 259 1106 25.64 1.28 0.77
1.54-2.85 km 95262.67 30.25 44.24 10.26 0.51 0.31
2.85-4.20 km 77028.98 24.46 14378 3333 1.67 1.00
4.20-5.75 km 44870.1 14.25 99.54 23.08 115 0.69
5.75-10.12 km 16174.66 5.14 3318 7.69 0.38 0.23
Distance from Road (km)
0-1.74km 140275.58 4455 8848 20.51 1.03 0.67
1.74-3.94 km 847414 2691 44.24 10.26 0.51 033
3.94-6.72 km 5016643 1593 66.36 15.38 0.77 050
6.72-10.22 km 27267.21 8.66 13272 30.77 154 1.00
10.22-16.49 1244937 395 99.54 23.08 1.15 0.75
Land use/Land cover
Water bodies 3466.31 1.1 39.87 924 046 0.16
Vegetation 22724032 72.16 255.55 59.24 296 1.00
Fallow land 14437.29 4.58 29 6.72 0.34 0.1
Agricultural Land 65442.75 20.78 10693 24.79 1.24 042
Settlement 431333 137 0 0 0 0.00
NDVI
Very Low (-0.07-0.12) 37936.34 12.05 114.18 2647 132 091
Low (0.12-0.17) 833849 2648 125.06 28.99 145 1.00
Medium (0.17-0.23) 85506.39 2715 96.06 2227 1.1 0.77
High (0.23-0.29) 70015.86 22.23 65.25 15.13 0.76 052
Very High (0.29-0.49) 38056.51 12.09 30.81 7.14 0.36 0.25
TWI
Very Low (1.95-7.37) 49986.44 15.87 63.12 14.63 0.73 035
Low (7.37-8.53) 113766.56 36.13 178.85 41.46 207 1.00
Medium (8.53-9.76) 93346.92 29.64 11573 26.83 134 065
High (9.76-11.70) 469235 149 7365 17.07 0.85 041
Very High (11.70-1891) 10876.58 345 0 0 0 0
LNRE — é (6) Gamma operators (k) values of 0975 in GIS
E environment.

Where A: landslide area in every unit, E: mean area of
landslide in the whole unit.

The sub-parameters wise LNRF values have been cal-
culated (Table 3). In the present study, fuzzy member-
ship values have been allotted based on LNRF. To
transform the LNRF values to Fuzzy membership values
each sub-class has been divided by the maximum value
of LNRF of individual parameter. The membership value
ranges from 0 to 1. The fuzzy membership values using
LNRF model have been converted into a single layer to
chalk out the landslide susceptibility zone using Fuzzy

Analytic hierarchy process (AHP)

Analytic hierarchy process is an important multi-criteria
decision analysis (MCDA) method which can be applied
for assigning the weights to the individual parameter
(Saaty and Vargas 1998). AHP method is a pair wise
comparison matrix. When the matrix is formed, the
consistency ratio (CR) value ranges from 0 to 1 (Saaty
1980, 1990, 1994). To identify the potentiality index,
general linear combination method can be performed
with the help of AHP method (Malczewski 1999). The
pair wise matrix has been formed with the help of the
Saaty’s (1980) fundamental scale (Table 4). In the present
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Table 4 Fundamental scale of Saaty's (1980)

Scale Description

1 Equal Importance

3 Moderate Importance

5 Strong Importance

7 Very Strong Importance

9 Absolute Strong Importance

24,68 Intermediate values between the two adjacent judgments

case, the weight of parameters calculated based on AHP
method has been combined with fuzzy logic to prepare
landslide susceptibility map of the study area.

Results

Application of fuzzy-LNRF model

The spatial distribution of average annual rainfall of the
study area ranges from 1877.38 mm to 2333.96 mm
(Fig. 3a) respectively. The rainfall map has been catego-
rized into five classes such as very low (1877 mm-1991
mm), low (1991 mm-2090 mm), moderate (2090 mm-—
2167 mm), high (2167 mm-2239 mm) and very high
(2239 mm-2333 mm) respectively. The high sub-class of
rainfall with 36.31% area is covered the 68.29% land-
slides of the study area (Table 3). The LNRF values have
been calculated and converted into fuzzy membership
(FM) value. Here, high rainfall sub-class has attained the
highest FM value i.e. 1, indicating the high risk of land-
slide than other sub-class of rainfall (Table 3). The
spatially the slope of the study area ranges from 0 to
79.23° (Fig. 3b). It has been classified into five categories
such as very low (0°-9.32°), low (9.32°-18.64°), medium
(18.44° -27.34°), high (27.34° — 36.66°) and very high
(36.66°-79.23°) classes based natural break classification
method in GIS environment. The high and very high
slope classes are covered with 31% and 28% landslides
area. The fuzzy membership values of these sub-classes
are nearer to 1, representing as high landslides risk
areas. The altitude of the study area ranges from 15 m to
3602 m (Fig. 3c) respectively. The altitudinal map has
been categorized into five classes such as very low (15 m
to 422.93 m), low (422.93 m to 985.6 m), medium (985.6
m to 1576.4 m), high (1576.4m to 2279.73 m) and very
high (2279 m-3602 m). The low elevation class is cov-
ered with 51.93% landslide area (Table 3). The fuzzy
membership value of 422.93 m-985.6 m elevation range
is 1, representing higher landslide susceptibility than
other sub-layers. Aspect of the study area has been clas-
sified into several categories such as flat, north, north-
east, east, southeast, south, southwest, west and
northwest. South sub-layer with 14.32% area is covered
27.04% landslide area. Geologically, the study area is
composed of five geological segments namely Triassic,
Cenozoic, Pliocene-Pleistocene, Holocene and Middle-
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upper Pleistocene (Fig. 3e). Triassic geological segment
with 52.75% area is encompassed with 70.21% landslide
area. According to the LNRF model using fuzzy logic,
the Triassic geological segment has attained the max-
imum LNRF and fuzzy membership value. The other
sub-layers of geological segment are indicating the less
probability of landslide occurrence. Pedagogically, the
region is composed with several soil textural classes
namely Gravelly loamy, Fine Loamy to Coarse Loamy,
Gravelly Loamy to Loamy Skeletal, Gravelly Loamy to
Coarse Loamy and Coarse Loamy (Fig. 3f). The 34.21%
landslide areas are concentrated in Gravelly Loamy to
Loamy skeletal soil texture class (Table 3) and the LNRF
and fuzzy membership values are 1.71 and 1, which are
representing high risk of landslides. The distance from
river map (Fig. 3g) has been classified into five classes
such as 0-0.42km, 042km -1.10km, 1.10km - 1.66
km, 1.66km -226km and 2.26 km to 4.33km. The
classes 0.42 km - 1.10 km and 1.10 km - 1.66 km of river
buffering are covered with 46.34% and 26.83% landslide
area (Table 3). The LNRF values of 0.42km -1.10km
and 1.10km - 1.66 km sub-layers are 2.32 and 1.34 as
well as fuzzy membership values of the same layers are 1
and 0.58 which are indicating high landslide susceptibil-
ity. The lineament distance map (Fig. 3h) has been clas-
sified into five buffer zones such as 0-1.54 km, 1.54 km
-2.85km, 2.85km -4.20km, 4.20km -5.75km and
5.75km -10.12km. The 2.85-4.20 km buffer zone has
higher LNRF value (Table 3) than the other buffer zones.
Road building activity in mountain areas is regarded as
an infrastructure improvement, which may ground detri-
mental effects on slope steadiness; therefore, it can be
helpful for delineating the prone areas to landslide oc-
currence. The buffer layer 6.72 km to 10.22 km. distance
area from road is covered 30.77% landslide area (Table 3).
This road buffer class has attained the fuzzy membership
value 1. Other sub-layers of distance from road are
showing the low to medium landslide susceptibility. The
five type of land use classes have been identified in this
study area namely water bodies, natural vegetation, sand,
agricultural land and settlement with the help maximum
likelihood classification method in GIS environment
(Fig. 3j). The 72.16% area is covered with natural vegetation
area in this district. The agricultural land and settlement
areas are indicating less probability for the occurrence of
landslide. Natural differential vegetation index (NDVI) is
one of the important factors of environment. The value of
the NDVI of the study area ranges from -0.07 to 0.49
(Fig. 3k) respectively. The NDVI map of the study area has
been classified into five classes such as very low (- 0.07—
0.12), low (0.12-0.17), medium (0.17-0.23), high (0.23—
0.29) and very high (0.29-0.49). According to LNRF model,
the low sub-class of NDVI is attained the highest LNRF
and fuzzy membership values i.e. 1.45 and 1 which are also
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Fig. 4 Landside Susceptibility Maps (a) based on Fuzzy-LNRF model & (b) based on Fuzzy-AHP model

indicating the high landslide susceptibility. The spatial dis-
tribution of TWI of the study area ranges from 1.95 to
18.91(Fig. 3l) respectively. TWI map of the study area has
been classified into five classes namely very low (1.95 to

7.37), low (7.37-8.53), medium (8.53-9.76), high (9.76—
11.70) and very high (11.70-18.91) (Table 4). The low and
medium TWI classes area representing the high risk for
landslide than other sub-layers.



Roy and Saha Geoenvironmental Disasters (2019) 6:11

The landslide susceptibility map (LSM) based on fuzzy
membership values has been prepared with the help of
fuzzy gamma operators (k) value of 0.975 and shown in
Fig. 4a. It has been classified into three classes namely
low, medium and high landslide susceptibility zones.
Out of the total district 34% area is highly susceptible to
landslide (Table 6).

Application of fuzzy-AHP model

In the present work the Fuzzy set theory with AHP
is considered as the multi-criteria decision approach
for identifying the landslide susceptibility zones. The
integration of fuzzy set theory and AHP can be pro-
vided a good and reliable technique for zoning land-
slide susceptibility. AHP is a single process which
helps to determine the weight of different factors
based on the expert’s opinion and knowledge. For
the present work, weights have been assigned to
landslide determining factors (Table 5) with the help
of AHP method. The highest weight has been
assigned to rainfall (0.180) and followed by slope
(0.162), distance from the river (0.108), soil texture
(0.095) and elevation (0.086) for mapping the land-
slide probability. Thereafter, the linear membership
function (MF) has been used to prepare the fuzzy
map of the selected parameters for landslide suscep-
tibility mapping. The value of fuzzy membership
ranges from 0 to 1. Therefore, values of prepared
fuzzy maps of all selected parameters must be
ranged from O to 1. The weights of parameters, cal-
culated by AHP method, have been integrated with
fuzzy maps of selected parameters to generate a sin-
gle layer of landslide susceptibility with the help of
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raster calculator of spatial analyst tool in Arc-
GIS10.3.1 software. The landslide susceptibility map
(Fig. 4b) has been classified into three categories like
low, medium and high landslide susceptibility zones
covering an area of 37.88%, 39.29% and 22.83% re-
spectively (Table 6).

Some landslides identifed from google earth imagery
and directly from the field are mentioned below- (Fig. 5)

Validation

The landslide susceptibility maps of Darjeeling district,
prepared by Fuzzy-LNRF and Fuzzy-AHP models have
been validated through the ROC curve and RMSE.
Model based work may be possible to evaluate and jus-
tify easily with the help of ROC curve (Chung and Fab-
bri 2003). The ROC curve is drawn by X and Y axis. The
X axis represents the false positive rate (1-specificity)
and the Y axis represents the true positive rate (sensitiv-
ity) (Negnevitsky 2002). Mallick et al. (2018) and Feiziza-
deh et al. (2014) have applied the ROC curve for the
validation of the landslide susceptibility zone. In the
present study, 98 landslide patches have been selected
among the 326 landslide patches for validating the
landslide susceptibility maps. The area under curve
(AUC) can be drawn for the landslide susceptibility
zones with the help of the Table 7. According to the
results of ROC curve, the area under curve (AUC)
values of landslide susceptibility maps, prepared by
the Fuzzy-LNRF and Fuzzy-AHP models are 91% and
90% which are indicating the excellent potentiality of
these models for landslide susceptibility mapping
(Fig. 6a, b). The LSM of both models have also been

Table 5 Parameters wise weights, matrix and consistency ratio using AHP

Parameters Rainfall Slope Elevation Aspect Geology Soil Distance Distance from  Distance LULC NDVI TWI Weights
Texture from River lineament from Road

Rainfall 1 0.180

Slope 0.5 1 0.162

Elevation 0.33 0.2 1 0.086

Aspect 0.2 0.5 1 1 0.084

Geology 0.5 0.5 0.5 2 1 0.080

Soil Texture 0.5 0.2 2 1 0.5 1 0.095

Distance from 0.2 0.2 0.5 0.5 0.2 0.5 1 0.108

River

Distance from 0.2 0.2 0.5 0.5 0.5 0.2 0.5 1 0.046

lineament

Distance from 0.5 0.2 0.5 1 0.5 0.5 2 2 1 0.062

Road

LULC 0.17 02 05 0.2 05 05 0.5 0.5 0.5 1 0.051

NDVI 0.2 0.2 0.2 0.2 0.2 02 0.2 0.2 0.2 2 1 0.025

TWI 0.14 0.2 0.2 02 02 02 0.2 0.2 0.5 2 1 10021

Consistency Ratio =0.078
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Table 6 Areal distributions of LSM based on LNRF and Fuzzy- validated through RMSE method. The RMSE is calcu-

AHP models lated using the Eq.7.

Landslide LNRF model Fuzzy-AHP model

;g;ceesptibility Area in sg. km % of Area  Area in sgkm % of Area

Low 950.15 30.17 1192.97 37.88

Medium 111440 3539 123717 39.29 RMSE = (7)

High 1084.46 3444 718.86 2283

Where, N is the numbers of samples, A is the ob-

served values and P is the predicted values. Can et al.
(2005) has considered the RMSE value of 0.5, as the cut-
off value. The values of RMSE > 0.5 and < 0.5, indicate
the bad predictive and good predictive model. In the

s 3

Fig. 5 Picture showing the landslide sites — from the google earth image. a Lish catchment (26°57'N, 88°30"17“E), b Nimbong Khasmahal
(26°58'04N, 88°34'16"E), ¢ Sittong (26°52'N, 88°22'30"E) and from the field, d Near Kurseong town (26°55'46.32"N, 88°19'50.38"E), e Near Darjeeling
town (26°53'13.37"N, 88°17'46.45"E), f Nathula road (26°54'43.14"N, 88°18'21.10"E)
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Table 7 Characteristics of AUC of ROC curve (Yesilnacar 2005)

AUC Values Characters
0.6-0.5 Average
0.7-0.6 Good
0.8-09 Very Good
1-0.9 Excellent

present study, the results of RMSE are justified Fuzzy-
LNRF (RMSE=0.14) and Fuzzy-AHP (RMSE =0.18)
models as good predicative models for landslides suscep-
tibility mapping.

Discussions

In the landslide prone areas appropriate methods of
landslide susceptibility mapping play significant task in
providing a proper approach to authorities and decision
makers. Very fundamental information regarding the
landslide conditioning factors can be acquired from the
landslide susceptibility mapping (LSM) and it can be an
essential way in hazard mitigation measures and man-
agement. There is a large number of weight combining
methods for preparing the landslide susceptibility map.
The results of some multi-criteria decision analysis such
as AHP, LNRF, Fuzzy logic, Artificial Neural Network
Support Vector Machine, Logistic Regression and Fre-
quency Ratio are a little bit varied from region to region.
Some researchers such as, Malik et al. (2016),
Mohammadi et al. (2014), Shadfar et al. (2011) and
Gupta and Joshi (1990) pointed out that LNRF
method is suitable method in landslide susceptibility
mapping. On the other hand, Abedini and Tulabi
(2018) was indicated that LNRF is not suitable
method like frequency ratio and AHP.
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In this work, Fuzzy-AHP and Fuzzy-LNRE, the two ef-
ficient and easily operate ensemble models have been
used for delineating landslide susceptibility and com-
pared with them. In these two ensemble models Fuzzy-
AHP and Fuzzy-LNRE, input process, calculations and
output process are very simple and can be readily under-
stood. The geo-environmental factors like slope, aspect,
altitude, geology, soil texture, distance from river, dis-
tance from lineament, distance from road, rainfall, land
use/ land cover, NDVI and TWI have been considered
for the determination of the landslide susceptible area of
the Darjeeling district. According to the Fuzzy-LNRE
and Fuzzy-AHP maps 34.44% and 22.83% areas (Fig. 7a
and b) of the district fall under the high susceptibility of
landslide. Based on these findings, it can be acknowl-
edged that the high susceptibility zone delineated by the
Fuzzy-LNRF method is forecasting greater percentage of
the landslide area. Additionally, the reliability of the re-
sults of two susceptibility maps has been validated based
on the known landslide dataset by employing the area
under the curve (AUC) of the receiver operating charac-
teristics (ROC) and RMSE. A landslide inventory map
has been prepared considering the multiple field works
and Google Earth Images. Out of the 326 landslides 246
(70%) locations have been used for training data and
remaining 80 (30%) have been used as testing data. Re-
spective AUC values of 91% and 90% for fuzzy-LRNF
and fuzzy-AHP proved that the map produced by the
fuzzy-LRNF model looks like having a better accuracy
than the fuzzy-AHP model. This finding is helpful for
emergency situation because time is very significant in
hazard studies. It could be assessed that the models ap-
plied have relatively similar accuracies. Methods such as
LNRF (Gupta and Joshi 1990 & Abedini and Tulabi
2018) and fuzzy-AHP (Roodposhti et al. 2014) were used
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in mapping the landslide susceptibility. Compared to
these previous studies the used methods i.e. fuzzy-LNRF
and Fuzzy-AHP in this study are showing better per-
formance in preparing the LSM. Taking into account the
performances, we suggest that both Fuzzy-LNRF and
Fuzzy-AHP models can be used in landslide studies, as
they are capable of producing flawless and stable land-
slide susceptible maps for mitigating the risk and man-
agement planning. There are little differences in result
between the Fuzzy-LNRF and Fuzzy-AHP derived sus-
ceptibility maps. Moreover, the Fuzzy-LNRF model is
promising and sufficient to be advised as a method to
prepare landslide susceptibility map at regional scale.

Conclusions

For the prevention of human lives and property, a short
and long-term solution is necessary for mitigating the
landslide risk in this region. At present day, landslide is
to be considered the most serious natural hazards in the
Darjeeling district. The study has been adopted the suit-
able multi-criteria decision making approaches like
Fuzzy-AHP and Fuzzy-LNRF to outline the landslide
susceptibility zones. The landslide susceptibility maps of
both models have been categorized into three classes
such as low, moderate and high landslide susceptibility
zones. The high landslide susceptibility zone has been
found in the middle and northern portions of the study
area because of the presence of fragile soil, high concen-
tration of drainage, frequent heavy rainfall and sloppy
land. Among these two ensemble models, Fuzzy-LNRF
is showing better acceptability than the other model. So,
the study has been done by these two ensemble models
help to understand the landslide hazards problem of an
area. The study also provides the essential information
to the planner, government, local people and researchers
to take suitable steps for the reduction and the mitiga-
tion of the landslides problems in the Darjeeling district.
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