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and landslide mitigation purpose.

Simada area is found in the South Gondar Zone of Amhara National Regional State and it is 780Km far from Addis
Ababa. Physiographically, it is part of the northwestern highlands of Ethiopia. This area is part of the Guna Mountain
which is characterized by weathered volcanic rocks, rugged morphology with deeply incised gorges, heavy rainfall
and active surface processes. Many landslides have occurred on August 2018 after a period of heavy rainfall and
they caused many damages to the local people. In this study, Frequency Ratio (FR) and Weights of Evidence (WoE)
models were applied to evaluate the landslide causative factors and generate landslide susceptibility maps (LSMs).
The landslide inventory map that consists of 576 active and passive landslide scarps was prepared from intensive
fieldwork and Google Earth image interpretation. These landslide locations were randomly divided into 80%
training and 20% validation datasets. Seven landslide causal factors including aspect, slope, curvature, lithology, land
use, rainfall and distance to stream were combined with a training dataset using GIS tools to generate the LSMs of
the study area. Then the area was divided into five landslide susceptibility zones of very low, low, moderate, high
and very high. Later, the resulting maps have been validated by using area under the curve and landslide density
index methods. The result showed that the predictive rate of FR and WoE models were 88.2% and 84.8%,
respectively. This indicated that the LSM produced by FR model showed a better performance than that of WoE
model. Finally, the LSMs produced by FR and WoE models can be used by decision-makers for land use planning
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Introduction

Landslides are one of the recurrent natural problems
that are widespread throughout the world, especially in
mountainous areas which caused a significant injury and
loss of human life, damage in properties and infrastruc-
tures (Parise and Jibson 2000; Dai et al. 2002; Glade
et al. 2005; Kanungo et al. 2006; Pan et al. 2008; Girma
et al. 2015). The term “landslide” is the movement of a
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mass of rock, debris or earth down a slope under the in-
fluence of gravity (Varnes 1978; Hutchinson 1989; WP/
WLI - International Geotechnical Societiess UNESCO
Working Party on World Landslide Inventory 1990; Cru-
den 1991; Cruden and Varnes 1996). Landslides are
caused by different triggering factors such as heavy or
prolonged precipitation, earthquakes, rapid snow melt-
ing and a variety of anthropogenic activities. Landslides
can involve flowing, sliding, toppling or falling move-
ments and many landslides exhibit a combination of two
or more types of movements (Crozier 1986; Cruden and
Varnes 1996; Dikau et al. 1996).
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Landslide in Ethiopia is a common phenomenon
which often causes significant damage to people and
property. Almost 60% of the total population in Ethiopia
lives in the highland areas (Ayalew 1999) which is char-
acterized by high relief, complex geology, high rainfall,
rugged morphology, very deep valleys and gorges with
active river incision. The rapid population growth
demanded the use of areas which were not previously
used for settlement, urban expansion, agricultural and
other purposes thereby exposing these areas to landslide
problems after rainy seasons (Temesgen et al. 2001;
Abebe et al. 2010; Woldearegay 2013).

In recent years landslide incidences are increasing in
the Ethiopian highlands due to man-made and natural
causes (Meten et al. 2015b). For instance, from 1960 to
2010 alone, Landslides have killed 388 people, injured 24
people, and damaged agricultural lands, houses and in-
frastructures (Ayalew 1999; Temesgen et al. 1999; Wol-
dearegay 2008 and (Ibrahim: Landslide assessment and
hazard zonation in Mersa and Wurgessa, North Wollo,
Ethiopia, unpublished)). According to Abebe et al.
(2010), the highlands and mountainous area of Ethiopia
like the Blue Nile Gorge, the Lower Wabe-Shebele River
valley, Gilgel Gibe River, Tarmaber, Kombolcha - Dessie
road, Uba Dema village in Sawla, Wondogenet area and
many other parts of Ethiopia are repeatedly facing prob-
lems associated with landslides. The landslides in these
areas are affecting human lives, infrastructures, agricultural
lands and the natural environment. As a result of this, the
study of the landslide has drawn global attention to
increase awareness about its socioeconomic impacts and
the pressure of increasing population and urbanization on
mountainous areas (Kanungo et al. 2006).

The current study area is found in Simada District of
South Gondar Zone in the Amhara National Regional
State of Northwestern Ethiopia. It is part of the
northwestern Ethiopian highlands. This area is severely
affected by landslide incidences in recent years. Landslide
incidence in the study area occurred on August, 2018 after
a heavy and prolonged rainfall that caused the death of
animals, destruction of houses and wide areas of cultivated
and non-cultivated lands. Therefore, this area requires a
detailed investigation to evaluate the causes, types and
failure mechanisms of landslides and to prepare the land-
slide susceptibility maps. A systematic landslide study
helps to reduce the damages in infrastructures, houses
and cultivated lands and loss of lives. This importance will
be noticed when these landslide susceptibility maps are
used by decision-makers in regional land use planning,
landslide prevention and mitigation measures.

For proper and strategic land use planning, it is im-
portant to evaluate and delineate landslide prone areas
using different landslide susceptibility mapping tech-
niques. Preparing a landslide susceptibility map of a
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certain area is a useful tool in landslide hazard manage-
ment as it shows the degree of susceptibility of an area
to landslide occurrence. It is obvious that landslide
susceptibility maps can be generated based on the as-
sumption that future landslide will occur under the same
condition as in the past (Pham et al. 2015). Interpret-
ation of future landslide occurrence needs an under-
standing of conditions and processes that control
landslides in the study area. Past landslides and different
conditioning factors such as slope morphology, hydro-
geology and geology of the area are the main parameters
to assess and evaluate landslide susceptibility by inte-
grating these conditioning factors and past landslides in
a GIS environment.

GIS-based landslide susceptibility mapping techniques
have been used by several researchers (Aleotti and
Chowdhury 1999; Kanungo et al. 2009) which can be
classified into qualitative and quantitative ones (Yalcin
et al. 2011; Felicisimo et al. 2012; Peng et al. 2014; Wang
and Li 2017). Qualitative techniques include geomor-
phological analyses and inventory methods. These are
based on expert judgment and are more subjective than
quantitative methods. Quantitative methods such as de-
terministic analyses, probabilistic approaches and statis-
tical techniques closely rely on mathematical models
which have much less personal bias but still needs ex-
perience to produce and run these models (Aleotti and
Chowdhury 1999; Kanungo et al. 2009). In recent years,
many landslide susceptibility maps were produced using
GIS-based statistical approaches like Frequency Ratio
(FR) and Weights of Evidence (WoE) models. This is be-
cause the result from these models showed good per-
formance with high accuracy and these models are very
simple to implement and can provide the contribution
of each causative factor class for landslide occurrence
(Lee and Pradhan 2007; Akgun et al. 2007; Dahal et al.
2008; Isik Yilmaz 2009; Pradhan, Lee and Buchroithner
2010; Choi et al. 2012; Park et al. 2012; Vakhshoori and
Zare 2016; Fayez et al. 2018).

Several researchers have used Frequency ratio model
on landslide studies (Bahrain et al. 2014; Meten et al.
2015a; Haoyuan Hong et al. 2015; Pham et al. 2015; Pir-
asteh and Li 2017; Fayez et al. 2018; Khan et al. 2019)
and in comparison with a few methods (Akgun et al.
2007; Lee and Pradhan 2007; Isik Yilmaz 2009; Choi
et al. 2012; Park et al. 2012; Meten et al. 2015b; Wang
and Li 2017). A combination of both FR and WOoE
models have been applied for landslide susceptibility
mapping (Regmi et al. 2013; Rahmati et al. 2016). Gho-
lami et al. (2019) also compared the prediction capability
of frequency ratio, fuzzy gamma and landslide index
models. Each GIS-based statistical method requires data
on past landslides, preparatory causative factors and trig-
gering factors. To prevent or mitigate any damage from
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landslides, it is essential to assess the landslide prone
areas. The current study aims to carryout landslide sus-
ceptibility mapping by applying FR and WoE models in
order to highlight critically high and very high hazard
zones. This will help to reduce and mitigate any hazard
associated with future landslide occurrence.

Study area

The study area is 185.7 square kilometers which is lo-
cated in Simada District of South Gondar Zone, Amhara
National Regional State, Ethiopia (Fig. 1). The area is
bounded between 38° 11' E and 38° 20' E longitudes and
11°30' N and 11°41' N latitudes. The typical drainage
pattern of the study area is dendritic and parallel. Atkus
and Kostet Rivers are the main rivers that affect the
study area by eroding the banks of rivers leading to slope
instability. The confluence of these rivers forms Bijena
River which is the largest river in the study area. Most of
the rivers in the study area flow towards the southeast
direction. The physiography of the study area forms the
rugged topography of Guna Mountain (Fig. 2) which is
part of the northwestern Ethiopian highlands. The area
can be classified into two main physiographic regions.
These are the plateau area and the rugged terrain. The
plateau areas are characterized by volcanic landscapes
that represent the high flatlands of the Kefoye, Agona
and Jinjero Gedel areas. These areas are water divide
zones in which rivers are flowing to Abay Basin in the
west and to Bashilo Basin in the south. In this area, the
slopes are ranging from flat slopes on the top to steeper
slopes at the plateau scarp. The rugged terrain is highly
dissected by major rivers and streams which are charac-
terized by deep narrow valleys and gorges. Slopes in
these areas are steep to vertical and susceptible to ero-
sional and landslide phenomena. The elevation of the
study area ranges from 2067m to 3586 m which com-
prises of medium to very high relief hills. The presence
of steep scarps, rugged slope faces, deep gorges and
steep ridges showed that this area is prone to active sur-
face processes and landslide incidences. Based on eleva-
tion, the climatic zones of the study area are mostly
falling under the highland climatic zone. The primary
wet season extends from June to September. There is
great variation in the rainfall amounts with maximum
rainfall occurring during the wet season which starts in
June and ends in September with the heaviest rainfall
occurring during the months of July and August.

Methods

In order to achieve the objectives of this research, data
collection and organization, preparation of landslide in-
ventory datasets, database construction of landslide
causative factors and application of FR and WoE models
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were carried out to prepare the landslide susceptibility
maps and validate them.

Data collection and organization

The necessary data for this study were collected from
various sources. These include collecting relevant litera-
tures from published and unpublished papers, DEM data
from USGS, a regional geological map from Geological
Survey of Ethiopia at a scale of 1:250000, rainfall data
from National Metrological Agency of Ethiopia, a topo-
graphic map from Ethiopian Geospatial Information
Agency at a scale of 1:50000 and Google Earth image
from Google Earth. During field work, data collection
was carried out on different rock types by describing
their character, the relative degree of weathering, slope
steepness, location of springs and swamps, landslide in-
ventory mapping on both active landslide and scarp
areas by measuring their length, width, accumulation
zone and depth (if possible), land use and land cover,
man-made activities including farming practice. After
compilation of the actual field investigation, the data has
been systematically processed and analyzed first in
ArcGIS followed by Microsoft Excel and then finally in
ArcGIS.

Preparation of landslide inventory dataset

The quality of the landslide inventories depends on the
accuracy, type and certainty of the information shown in
the maps. New and emerging mapping methods, based
chiefly on satellite, aerial and terrestrial remote sensing
technologies, can greatly facilitate the production and
the update of landslide maps. Literature review has
shown that the most promising approaches exploit VHR
optical, monoscopic and stereoscopic satellite images,
analyzed visually or through semi-automatic procedures,
and VHR digital representations of surface topography
captured by LiDAR sensors. A combination of satellite,
aerial and terrestrial remote sensing data represents the
optimal solution for landslide detection and mapping, in
different physiographic, climatic and land cover condi-
tions (Guzzetti et al. 2012). Ye et al. (2019) detected
landslides from hyperspectral remote sensing data using
a deep learning technique.

The landslide inventory dataset in the current study
consist a total of 576 landslides which were identified
from Google Earth image interpretation and intensive
field survey. For landslide susceptibility mapping land-
slide polygons can be divided into training and valid-
ation datasets. The training dataset is used for
constructing the predictive model while the validation
dataset is used for validating the model. In this study,
the specific date of landslide occurrence is not well
known. Hence, the landslide polygons were randomly
split into two classes with 80% for training and 20% for



Mersha and Meten Geoenvironmental Disasters (2020) 7:20

Page 4 of 22

14°‘0'N

10°15'N

2 4
DD

Oromia

Legend
Main roads

Ambhara region

‘ Study Area

IPINE__ 3TVE

T

40°30'E 44°0'E

47°30'E

11°40'15"N

11°37'N

11°33'45"N

0 0.02 0.0
|

11°30"30"N

na-Gedeba

.Asfa Meda

4 ‘/
DD

/ Legend

——— Gravel road

River/Stream

. Village

T T
I8°12'E 3813 0"E

T T T
38°15'E 38°16'0"E 38°18'E

T
38°19'30"E

T
38°21'E

Fig. 1 Location map of the study area




Mersha and Meten Geoenvironmental Disasters (2020) 7:20

Page 5 of 22

Fig. 2 Three dimensional map of the study area
.

validation by keeping their spatial distribution into ac-
count (Fig. 3 and 4). In addition, the validation data sets
for most of the landslide susceptibility or hazard assess-
ments were chosen in between 20% and 30% of the total
landslide inventory.

Database for landslide causative factors

To undertake landslide susceptibility analysis in the
study area, a spatial database was first constructed for
the causative factors within the spatial analysis tools of
ArcGIS 10.4 software. The database consists of the land-
slide inventory datasets (training and validation) and the
landslide causative factors (slope, aspect, curvature; land
use, lithology, rainfall and distance from stream). These
factors were subsequently evaluated by calculating their
weights from the relationship between the landslide and
landslide causative factors and then these results were
verified. There are no strict rules or guidelines for the
triggering factors to be used in different statistical ap-
proaches for landslide susceptibility mapping. Instead,
the chosen factors should be operative and measurable
depending on a particular area’s characteristics (Ayalew
and Yamagishi 2005). One parameter may be an import-
ant controlling factor for landslide occurrence in a cer-
tain area but in most cases a combination of two or
more landslide causative factors may be effective in
addition to the triggering factor for landslide occurrence.

In this study, the triggering factor was heavy and pro-
longed rainfall. During the fieldwork, landslide locations
were identified and marked with GPS, land use (land
cover) types around the landslide scar, drainage net-
works and spring locations, lithological units and human
activities were investigated to prepare the landslide sus-
ceptibility maps.

Generally, the selection of landslide causative factors
should consider the nature of the study area and the
availability of data. In this regard, a total of seven
parameters were selected including slope, aspect,
curvature, lithology, rainfall, land use and distance to
stream. All causative factor maps were converted into
raster maps with the same coordinate system (WGS
1984 UTM zone 37N) and the same pixel size
(30mx30m). The rasterized training (80%) landslide
map and all the causative factor maps have been
overlaid and the information was extracted using the
spatial analyst tool of ArcGIS to calculate the ratings
or weights of all factor classes for FR and WoE
models. The summation of these ratings or weights of
each landslide factor will help to evaluate the spatial
relationship between them and the probability of
landslide occurrence in the study area.

Topographic parameters like slope, aspect, curvature
and distance to stream maps were derived from Digital
Elevation Model (DEM) with a cell size of 30 m by 30 m.
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Lithology and land use maps were prepared from intensive
fieldwork and Google Earth image interpretations. The
rainfall map was generated using IDW interpolation
technique of the spatial analyst tool in ArcGIS from
four rain gage stations near to the study area using the
rainfall data from National Meteorological Agency of
Ethiopia.

Frequency ratio (FR) model

Frequency Ratio model is a well-known and widely used
bivariate statistical method that is used for landslide sus-
ceptibility mapping (Lee and Talib 2005; Akgun 2012;
Demir et al. 2013; Mezughi et al. 2011; Yalcin et al.
2011; Abay and Barbieri 2012; Mondal and Maiti 2013;
Paulin et al. 2014). In this model, processing the input
data, computations and output-processes are very simple
and can be easily understood. It is simple and relatively
flexible to use and implement a landslide susceptibility
map with accurate results (Lee and Pradhan 2007;
Yilmaz 2009; Choi et al. 2012; Mohammady et al. 2012;
Park et al. 2012). The frequency ratio model is one of
the probabilistic models which are based on the ob-
served relationship between the distribution of landslides
and each landslide related factor (Lee and Talib 2005).
To evaluate the contribution of each factor towards
landslide susceptibility, the training landslide group was
combined with thematic data layers separately and then

the frequency ratio of each factor’s class was calculated
according to the following procedures.

First, the number of pixels for landslide occurrence
and non-occurrence in each factor’s class was calculated.
Second, the percentage of each factor’s class having
landslide to the total pixels containing landslide of the
factor was calculated and the percentage of each factor
class’s number of pixels to the total number of pixels in
the study area was calculated. Finally, the frequency ratio
of each factor class was obtained by dividing the per-
centage of landslide pixels to the percentage of area
pixels in each factor classes (Equation 1).

Npix(Si ) /3 ;NPix(S; )

ij = Npix(N, ;) /> NPix(N ) )

Where; Npix(S; ;) = the number of pixels containing
landslide within class j in factor i; Npix(N; ;) = the
number of pixels of class j in factor i; ;NPix(S;, ;) is the
number of total pixels containing landslide in the study
area; Y,NPix(N; ;) is the number of total pixels in the
study area.

The calculated FR value represents the degree of
correlation between landslide and a certain class of the
causative factor. A value of 1 is an average value for the
landslide occurrence of a specific landslide causative fac-
tor class. A value more than 1 indicates a strong and
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Fig. 4 Landslide inventory map showing the distribution of landslides
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positive correlation and a high probability of landslide
occurrence, while a value of less than 1 indicates a nega-
tive relationship and low probability of landslide occur-
rence in a certain class of a landslide causative factor.
The FR map of each causative factor is prepared with
the help of ArcGIS by assigning the calculated FR values.
Then the FR values of all the causative factor maps were
overlaid and numerically added using the raster calcula-
tor of the spatial analyst tool in ArcGIS 10.4 to prepare
the Landslide Susceptibility Index (LSI) map. LSI is

computed by summing the FR values of all the landslide
causative factor maps (Equation 2) and then the result-
ing LSI map was further reclassified in to very low, low,
moderate, high and very high landslide susceptibility
classes.

LSI = FRy + FRy + FRs + ... + FR, (2)

Where: LSI = Landslide susceptibility index, FR is the
frequency ratio and n is the number of selected causative
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factors. The calculated values of FR for each pixel in the
LSI indicate the relative susceptibility to landslide occur-
rence. The higher LSI pixel values have high susceptibil-
ity to landslide occurrence while the lower LSI pixel
values have lower susceptibility (Akgun et al. 2007).

Weights of evidence (WoE) model

WoE model is a log-linear form of the Bayesian prob-
ability model for landslide susceptibility assessment that
uses landslide occurrence as a training point to drive
prediction outputs. It calculates both unconditional and
conditional probability of landslide hazards. This method
is based on the calculation of positive and negative
weights to define the degree of spatial association be-
tween landslide occurrence and each explanatory vari-
able class (Pardeshi et al. 2013). The positive weights
(W+) indicate the occurrence of an event while the
negative weight (W-) indicates the non-occurrence of an
event. To evaluate W' and W, calculating the following
parameters is important.

e Nmap = total number of pixels in the map

e Nislide = number of pixels with landslides in the class

e Nclass = number of pixels in the class

e NSLclass = number of pixels with landslides in the
class

The values needed for the weight of evidence formula
are:

— Npixl = NSLclass

Npix2 = Nslide — NSLclass

Npix3 = Nclass — NSLclass

— Npix4 = Nmap — Nslide — Nclass + NSLclass

Then the positive and negative weights are calculated
as follows (Equations 3 and 4).

Npix,
W' = M Npi, + Npi, ®
Npix,
Npix; + Npix,
_ Npix,
W N, 1 Npi, @
Npix,
Npix; + Npix,

Where Npix; is the number of landslide pixels present
on a given factor class, Npix, is the number of landslides
pixels not present in a given factor class, Npixs is the
number of pixels in a given factor class in which no
landslide pixels are present and Npix, is the number of
pixels in which neither landslide nor the given factor is
present (Van Westen 2002; Dahal et al. 2008; Regmi

Page 8 of 22

et al. 2010). These weights are used to calculate a weight
of contrast value (C) for the particular susceptibility
variable (Equation 5).

C=Ww"-w~ (5)

The contrast value (C) measures the strength of a rela-
tionship between the causative factors and landslides. If
the contrast value is positive, it will have a positive
spatial association while the negative one will have a
negative spatial association. The weighted map (Wmap)
for each landslide causative factor can be prepared by
summing the weights of contrast(C) values of each factor
class. Similarly, the final landslide susceptibility index
(LSI) map was prepared by summing all the weighted
maps (XWmap) of each landslide causative factor
through a raster calculator of map algebra in the spatial
analyst tool of ArcGIS as follows (Equations 6 and 7).

Wmap = Z C (6)

LSI = Z Wmap (7)

Landslide inventory

During August, 2018, an intense rainfall in Simada area
triggered many landslides that occurred mostly in rural
areas. The damage was severe in the villages of Dubdu-
biya, Asfa Meda, Gedeba, Ditorka and at several other
sites along the river courses. Particularly, in Dubdubiya
and Asfa Meda villages, landslides damaged 81 dwell-
ings, killed 14 goats, affected thousands of people, dam-
aged hundreds of hectares of farmlands and dislocated
486 people. These problems occurred in these villages as
the settlement areas are mostly located at the foot of a
steep slope that is covered by weathered volcanic rocks
as well as the presence of stream accumulated debris
and earth flows that can suddenly burst out at the at the
outlets of a mountain. Landslide inventory map of the
study area (Fig. 4) was prepared from the combination
of an intensive field survey and Google Earth image in-
terpretations. Extensive field studies conducted from
mid-November to mid-December of 2018 helped us to
map known landslides using GPS and check the size and
shape of these landslides in order to identify the type of
movements, materials involved and to determine the
state and activity of landslides (active, reactivated,
dormant, etc.). This inventory data was mapped as
vector-based polygon data and then converted to the
raster format with a pixel size of 30m by 30m in ArcGIS
10.4.

In the present study area, a total of 576 landslides that
contain 6304 pixels were identified and divided ran-
domly into training and validation landslides by keeping
their spatial distributions into account. The training
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landslides that accounted 80% of landslides with 5126
pixels were used for building the predictive model while
the validation landslides that accounted 20% of land-
slides with 1178 pixels were used for validating purpose.
From the total landslide polygons, 117 landslides were
active landslides collected from field investigations while
the remaining 459 landslide polygons were collected
from time serious Google Earth image interpretations.

Landslide locations are predominantly distributed in
the south-central, in the north and in the eastern parts
of the study area with decreasing order of landslide
density, damage on agricultural land and infrastructures.
This area consists of a rugged and mountainous terrain
which is characterized by steep slopes, deep gorges, high
relief and fractured and weathered rocks. The common
types of landslide occurrence in the study area include
rock slide, rockfall, earth slide, debris slide and debris
flow, rotational and translational soil slide, translational
debris slide, rotational debris slide and complex types of
slides. Generally, these landslides predominantly affected
the rural areas in which the type of landslides and their
probable causes and damages are described below.

Most prominent landslides occurred in Asfa Meda,
Dubdubiya, Tej Wuha-Gedeba and Ditorka-Megersum
Villages. Landslides in Asfa Meda Village occurred at
the interface between thin residual soils and rhyolitic
rock and most of the landslides are shallow rotational

Page 9 of 22

and/or translational earth slides. Most of Dubdubiya
village was highly affected by stream undercutting, ero-
sion of the slope surface, riverbank erosion and im-
proper farming practice (Fig. 5). The slope materials are
dominantly covered by weathered basalt and colluvial
deposits. Erosional opening surfaces and tension cracks
were observed during field investigation indicating that
seeping water might have brought instability of the slope
through internal erosion of the weathered materials. A
typical example of a landslide in this village was the
landslide that occurred near Arata Gabriel Church. The
main causes of this landslide were stream/river under-
cutting, presence of spring on top of the slope and collu-
vial soil slope materials. The slope material in Teji
Wuha and Gedeba Villages is dominantly covered with
weathered tuff and thin residual soils. In this village,
there is an indication of shallow groundwater since the
swamp area and many springs are observed with rota-
tional and soil creep. Creeping of soil was identified by
tilting of powerlines and fences (Fig. 6d). The common
types of landslides that were observed in Ditorka and
Megersum villages were rockslide (Fig. 6a), rock fall,
debris slide (Fig. 6b) and rotational slide.

Landslide causative factors
The spatial distribution and density of landslides are
mainly controlled by topography of an area, weather

A) December 10/2013

Before

’ ot )
| C) September 8/2018

Flcld’ photo §

landslide occurrence and, ¢ Photo of the current condition
A\

Fig. 5 Historical landslide data in Dubdubiya Village as detected from Google Earth image. The white arrow and the red broken line in the
figures indicate the direction of the slope movement and a landslide boundary respectively. a Image before the landslide event. b Image after
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Fig. 6 Field photo of landslide and their damage in different villages of the study area (Red and blue colored arrow indicates the direction of
slope movements and River/stream flows respectively). In Ditorka and Megersum Villages- (a) Rockslide (b) Debris slide; Teji Wuha and Gedeba
Villages- (¢) Earth slide on the gravel road (damaged culvert) (d) Creep (tilting of powerline); in Asfa Meda Village- (e) and (f) Complex type
landslides; in Dubdubiya Village- (g) Shallow debris flow that damaged wheat crop and (h) Rockslide

Creeping

condition, geology, land use/land cover and anthropo-
genic factors (Khan et al. 2019). Consequently, evaluat-
ing the impact of these causative factors on the spatial
distribution of landslides is very important in order to
understand their failure mechanism and to prepare the
landslide susceptibility map. In this study, seven causa-
tive factors that have been used for the preparation of
landslide susceptibility maps include slope, aspect,
curvature, lithology, land use/ land cover, rainfall and
distance to stream. The roles played by each of these
causative factors will be discussed in the following
sections.

Slope
Slope is a very important parameter for landslide study
as it has a direct relation with landslide occurrence. As a

result, it is frequently used in preparing a landslide
susceptibility map (Yalcin and Bulut 2007). It is well
known that landslide occurs more frequently on steeper
slopes due to gravity stress. The slope map (Fig. 7a) of
the study area was prepared from DEM data. It was
divided into five classes such of 0 — 5% 5° — 12°, 12° —
30°% 30° — 45° and > 45°. For slope classes above 12°,
the frequency ratio is increasing which indicate the
higher probability of landslide occurrence in these
classes (Table 1).

Curvature

Curvature map of the study area was generated from
DEM data and it was classified into 3 classes of concave,
convex and flat surfaces (Fig. 7b). Following heavy rain-
fall, a convex or concave slope contains more water and
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retains this water for a longer period (Lee and Talib
2005). The more positive or negative values indicate the
higher probability of landslide occurrence. In the flat
area, the probability of landslide occurrence is very low.
A positive curvature indicates that the surface was
upwardly convex at that grid. A negative curvature
indicates that the surface was upwardly concave at that
grid and a value of zero indicates that the surface is flat.

Aspect

Aspect refers to the slope orientation which is generally
expressed in terms of degree from 0° — 360°. It is con-
sidered as an important factor in landslide studies as it
controls slope’s exposure to sunlight, wind direction,
rainfall (degree of saturation) and discontinuity condi-
tions (Komac 2006). Slope aspect map (Figure 8c) in this
study area was derived from DEM data and it was
divided into nine classes, namely; north (0 — 22.5, 337.5
- 360,), northeast, east, southeast, south, southwest, west
and northwest (Fig. 7d).

Distance to stream

The proximity of the slope to the stream course is an
important factor that dictates the landscape evolution
of the area and an indicator of the landslide and
related erosional aspects. Rivers with a number of
drainage networks have a high probability of landslide
occurrence as they erode the slope base and saturate
the underwater section of the slope forming material
(Akgun and Turk 2011).

Since there are many streams in the study area which
flow into Kostet, Atkus and Bijena Rivers, many landslides
occurred in the close vicinity of these rivers. Hence, this
parameter was considered as one causal factor in landslide
susceptibility analysis. Zones with parallel pattern of
drainage in steep slopes are the most probable landside
sites. Drainage often plays its own role in developing pore-
water pressure which reduces the shear strength of slope
materials. Streamlines were derived from DEM data and it
was classified based on stream order.

Landslide in this area is mostly associated with 1%, 2™,
and 3" order streams. Distance from stream map was
developed from Euclidean distance buffering method in
the spatial analyst tool of ArcGIS 10.4. This map was
classified in to five subclasses: 0 — 50, 50 — 100, 100 —
150, 150 — 200 and > 200 meter (Fig. 7c).

Land use / land cover

Land-use change has been recognized throughout the
world as one of the most important factor influencing
the occurrence of rainfall-triggered landslides. Changes
in land use/cover resulted from man-made activities
such as deforestation, overgrazing, intensive farming and
cultivation on steep slope can initiate slope instability
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Factor Class Npix(N;;) % Npix(N;;)” Npix(Sij) % NPix(S;)" FR=x/y
Slope (degree) (0-5° 15,104 7.314 97 1.892 0.259
(5-12)° 71,393 34.571 1362 26.570 0.769
(12-30)° 110,037 53.284 2914 56.850 1.067
(30-45)° 9661 4.678 703 13.714 2932
>45° 316 0.153 50 0.975 6.375
Curvature (-3.60) - (-0.001) 104,276 50494 3300 64.378 1.275
(=0.001) - 0.001 1944 0.941 45 0.878 0933
0.001-3.787 100,291 48.564 1781 34.744 0.716
Aspect N(0-22.5) 9699 4.697 261 5.092 1.084
NE(22.5-67.5) 37,106 17.968 1466 28.599 1592
E(67.5-112.5) 41,856 20.268 1226 23917 1.180
SE(112.5-157.5) 31,166 15.092 636 12407 0.822
S(157.5-202.5) 26,762 12.959 591 11529 0.890
SW(202.5-247.5) 28,551 13.825 522 10.183 0.740
W(247.5-292.5) 18,760 9.084 262 5111 0.563
NW(292.5-337.5) 7457 3611 68 1327 0.367
N(337.5-360) 5154 2496 94 1.834 0.735
Distance to stream(m) 0-50 24,940 12.076 1028 20.055 1.661
50-100 22,768 11.024 940 18.338 1.663
100-150 23,290 11.277 632 12329 1.093
150-200 16,063 7.778 349 6.808 0.875
> 200 119,467 57.845 2177 42470 0.734
Land use Agricultural Land 143,001 69.241 3091 60.300 0.871
Moderate Forest 4844 2345 22 0429 0.183
River 2048 0.992 77 1.502 1515
Graze Land 29,754 14.407 1477 28.814 2.000
Sparse Forest 3481 1.686 121 2.361 1401
Settlement 14,047 6.801 54 1.053 0.155
Bush 9353 4.529 284 5.540 1.223
Lithology Residual Soils 26,102 12639 61 1.190 0.094
Trachyte 10,983 5318 149 2907 0.547
Weathered Tuff 59,963 29.035 1007 19.644 0.677
Rhyolite 36,735 17.788 1191 23234 1.306
Colluvial deposit 25,804 12.495 915 17.850 1429
Weathered Basalt 45,022 21.800 1751 34.159 1.567
Alluvial deposit 1910 0.925 52 1.014 1.097
Rainfall (mm/yr) 627-727 39813 19.277 811 15.821 0.821
727-813 53,885 26.091 754 14.709 0.564
813-901 51,601 24.985 1802 35.154 1.407
901-994 34,881 16.889 1253 24.444 1447
994-1125.2 26,348 12.758 506 9.871 0.774
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Fig. 8 Landslide Susceptibility Map of the study area using: a FR and b WoE Models
.

(Glade 2003). Vegetation has a major contribution to re-
sist slope movements. Vegetation having a well-spread
network of root systems increases shearing resistance of
the slope material. This is due to the natural anchoring
of slope materials. In addition to this, it reduces the ac-
tion of erosion and adds the stability of the slope. In an-
other way, barren or sparsely vegetated slopes are
usually exposed to erosion and thus it has the effect of
increasing slope instability. The land use map of the
study area was prepared from the Google Earth image of
2016 and the analysis was done in ArcGIS. About seven
land-use types were identified including moderate forest,
sparse forest, bush, grazing land, agricultural land, settle-
ment and river (Fig. 7e). The area is predominantly cov-
ered by agricultural land and grazing land.

Lithology
Lithology is one of the most controlling parameters in
slope stability since each class of materials has different

shear strength and permeability characteristics (Yalcin
and Bulut 2007). Different rock types have varied com-
position and structure which contribute to the strength
of the slope material in a positive or negative way. The
stronger rock units give more resistance to the driving
forces as compared to the softer/ weaker rocks. Litho-
logical map of the study area was prepared from existing
regional geological map (with a scale of 1:250,000) as a
preliminary map for further improvement of a lithologic
map into a scale of 1:50,000 based on a detailed field
survey. The study area contains seven lithological units
namely Trachyte, Weathered tuff, Rhyolite, Weathered
basalt, Residual soils, Colluvial and Alluvial Deposits
(Fig. 7f).

Rainfall

Rainfall is considered as an influencing factor to cause
slope instability. Precipitation, particularly intense and
prolonged rains are controlling factors that trigger
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landslides by providing water thereby increasing under-
ground hydrostatic level and pore water pressure. When
the soil undergoes such pressure changes, water within
it will create negative or upward pressure, as it cannot
drain quickly. When the pore water pressure is equiva-
lent to the upper pressure, the shearing resistance of the
material decrease and will lead to failure of the material.
The rainfall data of the four stations that surround the
study area were collected from National Metrology
Agency of Ethiopia. There are various interpolation
techniques in ArcGIS to interpolate rainfall over a large
area based on few point data. These include Thiessen
polygon, Isohyetal, average arithmetic, inverse distance
weight (IDW) and Kriging. The general assumption of
the IDW method of interpolation is that the value of
unsampled point is the weighted average of known
values within the neighborhood. Therefore, the values
from a scattered set of known points can be utilized to
assign rainfall values to unknown points. It can be used
to compute the unknown spatial rainfall data from the
known sites that are adjacent to the unknown sites
(Chen and Liu 2012). The rainfall map of the study area
was prepared using the IDW interpolation method in
GIS. The rainfall data analysis showed that the max-
imum monthly rainfall occurs in June, July, August and
September which coincides with the landslide occur-
rence in this area. The rainfall map of the study area was
divided into five annual rainfall classes of 627 — 727, 727
— 813, 813 — 901, 901 — 994 and 994 - 1125.2 millime-
ters (Fig. 7g) by the natural breaks method.

Result and discussion

Relationship between landslide and causative factors

This study has analyzed the relationship between seven
causative factors and landslide occurrence. Using the FR
and WoE models, the relative frequency values and the
weights of values were calculated respectively. The
causative factors were classified into different classes and
weights were assigned to them for both FR and WoE
models as presented in Table 1 and 2 respectively. These
results showed that the relative susceptibility of each
class is almost similar for both models but the parame-
ters and results are different from each other. This im-
plies that if a factor class has lower and higher values in
both models, the susceptibility will also be lower and
higher respectively. In case of FR model, the spatial rela-
tionship between the causative factors and landslide is
determined by FR values. The causative factor classes
with FR value > 1 will have a high degree of landslide
occurrence. On the other hand, for the WoE model, C
describes the correlation and spatial association of the
landslide with the causative factors. The positive C
values indicate a positive association with more landslide
occurrence and vice versa for negative C values. The
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weights with higher values indicate a higher degree of
influence on landslide occurrence. Generally, the factor
class values derived from each model showed the spatial
relationship of the causative factors in their contribution
to landslide occurrence. The association is more or less
the same in both models.

The slope classes > 12° have higher contribution for
landslide occurrence. The area with a slope class > 45° is
the most landslide prone class while the area with a
slope class < 5° is the least one. Generally, as the slope
increases, the probability of landslide occurrence also in-
creases. In case of aspect classes, the FR values of slope
classes facing towards the northeast (22.5 — 67.5), east
(67.5 — 112.5) and north (0 — 22.5) are greater than one
indicating a higher probability of landslide occurrence.
The northeast facing aspect class has got the maximum
weight or rating followed by the east facing ones. The
curvature range of (-3.6) - (-0.001) has a greater contri-
bution to the slope failures. In case of lithology, three
units i.e. colluvial deposit, weathered basalt and rhyolite
have high probability of landslide occurrence. Colluvial
deposit and weathered basalts have less strength and
hence susceptible to landslides. Rhyolitic rocks in the
study area formed a cliff underlying thin residual soils.
As a result, most of the landslides occurred at the con-
tact between rhyolite and thin residual soils.

The type of land use also controls the occurrence of
landslide in the study area. The highest weights or rat-
ings were observed in the land use types of grazing land,
river, sparse forest and bushes indicating a high prob-
ability of landslide occurrence. The highest weighted
value of grazing land is due to its exposure to erosion
and weathering. In case of the relationship between
landslide occurrence and the distance from stream, as
the distance from stream increases, the occurrence of
landslide generally decreases. Landslide occurrence is
higher in the first three classes of 0 — 50m, 50 — 100m
and 100 — 150m (Table 1 and 2). With regard to the
causative factor rainfall, two classes with 813 — 901mm
and 901 - 994 mm have a higher C and FR values than
the other classes and are the most susceptible classes
(Table 1 and 2). Generally, slope classes > 20°, land use
classes of grazing land, sparse forest, river and bush;
lithology of colluvial deposit, weathered basalt, alluvial
deposit and rhyolite and distance to stream classes of <
150 m buffers are the most contributing factor classes
among the seven landslide factor classes.

Landslide susceptibility mapping using FR and WoE
models

Frequency ratio model

Map of each causative factor is prepared with the help
of ArcGIS and then the frequency ratio values were cal-
culated. The calculated FR values for each pixel in the
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Table 2 Data analyses and results obtained from Weights of Evidence model

Factor Class Npix1 Nslide Nclass Npix2 Npix3 Npix4 W+ W- C
Slope(degree) 0-5 97 5126 15,104 5029 15,007 186,378 -137 0.06 -143
5-12 1362 5126 71,393 3764 70,031 131,354 -027 0.12 -0.39
12-30 2914 5126 110,037 2212 107,123 94,262 0.07 -008 0.15
30-45 703 5126 9661 4423 8958 192,427 113 -0.10 1.23
>45 50 5126 316 5076 266 201,119 2.00 -0.01 201
Curvature Concave 3300 5126 104,276 1826 100,976 100,409 0.25 -0.34 0.59
Flat 45 5126 1944 5081 1899 199,486 -0.07 0.00 -0.07
Convex 1781 5126 100,291 3345 98,510 102,875 -034 024 -0.59
Aspect N 261 5126 9699 4865 9438 191,947 0.08 0.00 0.09
NE 1466 5126 37,106 3660 35,640 165,745 048 -0.14 0.62
E 1226 5126 41,856 3900 40,630 160,755 0.17 -0.05 022
SE 636 5126 31,166 4490 30,530 170,855 -0.20 0.03 -0.23
S 591 5126 26,762 4535 26,171 175214 -0.12 0.02 -0.14
SW 522 5126 28,551 4604 28,029 173,356 -0.31 0.04 -035
W 262 5126 18,760 4864 18,498 182,887 -059 0.04 -0.63
NW 68 5126 7457 5058 7389 193,996 -1.02 0.02 -1.04
N 94 5126 5154 5032 5060 196,325 -0.31 0.01 -032
Rainfall(mm/yr) 627-727 811 5126 39,813 4315 39,002 162,400 -0.20 0.04 -0.25
727-813 754 5126 53,885 4372 53,131 148,271 -0.58 0.15 -0.73
813-901 1802 5126 51,601 3324 49,799 151,603 0.35 -0.15 0.50
901-994 1253 5126 34,881 3873 33,628 167,774 038 -0.10 048
994-1125.2 506 5126 26,348 4620 25,842 175,560 -0.26 0.03 -030
Distance to stream (m) 0-50 1028 5126 24,940 4098 23,912 177,490 052 -0.10 0.62
50-100 940 5126 22,768 4186 21,828 179,574 053 -0.09 061
100-150 632 5126 23,290 4494 22,658 178,744 0.09 -0.01 0.10
150-200 349 5126 16,063 4777 15,714 185,688 -0.14 0.01 -0.15
> 200 2177 5126 119,467 2949 117,290 84,112 -032 032 -064
Land use Agricultural Land 3091 5126 143,001 2035 139,910 61,492 -0.14 0.26 —-0.40
Moderate Forest 22 5126 4844 5104 4822 196,580 =172 0.02 -1.74
River 77 5126 2048 5049 1971 199431 043 -0.01 043
Graze Land 1477 5126 29,754 3649 28277 173125 0.72 -0.19 091
Sparse Forest 121 5126 3481 5005 3360 198,042 035 —-0.01 0.35
Settlement 54 5126 14,047 5072 13,993 187,409 -1.89 0.06 -1.95
Bush 284 5126 9353 4842 9069 192,333 0.21 -0.01 0.22
Lithology Residual Soils 61 5126 26,102 5065 26,041 175,352 -2.39 0.13 -2.51
Trachyte 149 5126 10,983 4977 10,834 190,559 —062 0.03 -064
Weathered Tuff 1007 5126 59,963 4119 58,956 142,437 -040 0.13 -053
Rhyolite 1191 5126 36,735 3935 35,544 165,849 0.27 -0.07 0.35
Colluvial deposit 915 5126 25,804 4211 24,389 176,504 037 -0.06 043
Weathered Basalt 1751 5126 45,022 3375 43,271 158,122 046 -0.18 0.64

Alluvial deposit 52 5126 1910 5074 1858 199,535 0.09 0.00 0.10
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LSI indicate the relative susceptibility to landslide occur-
rence. The higher pixel values of LSI have the higher
landslide susceptibility while the lower pixel values will
have lower susceptibility (Akgun et al. 2007). The land-
slide susceptibility index was calculated based on the
frequency ratio values that have been determined in the
training process that can be added in a raster calculator
of ArcGIS as follows (Equation 8).

LSI = FRy + FRys + FRoy + FRy; + FRy, + FRyy + FRy
(8)

Where FRy = frequency ratio value of slope, Fr,s = fre-
quency ratio value of aspect, = FR., = frequency ratio
value of curvature, FR;; = frequency ratio value of lith-
ology, FRIu = frequency ratio value of land use, FR; =
frequency ratio value of rainfall, FRys = frequency ratio
value of distance to stream.

The LSI values for the frequency ratio model in the
study area range from 2.89 to 15.09. The LSI map is re-
classified to prepare the landslide susceptibility map of
the study area (Fig. 8a). There are different types of clas-
sification methods such as natural break, equal interval,
manual, standard deviation and quantile. In the current
study, reliable results were obtained from natural breaks
method. The result of other Cclassification methods
revealed the susceptibility classes with a high degree of
exaggeration where large part of the study area fall into
the high susceptibility class.

Therefore, the LSI values were classified into five sus-
ceptibility classes of very low (2.89 - 5.31), low (5.31 -
6.24), moderate (6.24 - 7.23), high (7.23 - 8.39) and very
high (8.39 - 15.09) using the natural breaks method of
classification. The result from Table 3 showed that
8.616% (16 km?), 20.474%(38km?), 29.537%(54.9km?),
27.898% (51.8 km?) and 13.474% (25 km?) areas fall into
the very low, low, moderate, high and very high suscepti-
bility classes respectively. As Fig. 8a clearly shows, the
very low and low susceptibility classes are dominantly
concentrated in the northwestern and southwestern plat-
eau part of the study area including Welela Bahir, Sho-
meda, Agona and Jinjero Gedel localities. Similarly, the
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very high and high susceptibility classes are concentrated
in the south central, southeastern and eastern part of the
study area particularly in Asfa Meda (Majeta), Dubdu-
biya (Arata Gebriel) and Ditorka-Megersum respectively
and scarcely distributed in the northern part of the study
area at Guna-Gedeba Village and in the western part.
Moderate susceptibility classes are mostly distributed
throughout the study area. The high concentrations of
landslides in those high and very high susceptibility
classes of the aforementioned areas were due to the
presence of colluvial and alluvial deposits, stream under-
cutting, scattered vegetation cover, man-made activities
like intensive farming, deforestation and cultivation.

Weights of evidence model

The landslide susceptibility map of the study area by
WoE model was produced based on the weighted values
from the seven causative factors and the training land-
slide (Table 2). The difference between W' and W~ is
known as the weight of contrast which is designated by
C = W" - W". This reflects the overall spatial association
between the causative factors and landslides. LSI map of
the study area was prepared by summing the weight of
contrast values (C) of all the seven causative factors
using a raster calculator in ArcGIS as follows:

LSI = Cy+ Cus + Copy + Cii + Cpyy + C}f + Cus
©)

Where LSI = landslide susceptibility index; Cy = weight
contrast value of slope, C,s = weight contrast value of
aspect, C., = weight contrast value of curvature, Cy =
weight contrast value of lithology, C;, = weight contrast
value of land use, Cs = weight contrast value of rainfall,
Cgys = weight contrast value of distance to stream.

The LSI values for the WoE model in the study area
range from -7.84 to 4.52. The LSI map is reclassified by
the natural breaks method of classification technique in
order to prepare the landslide susceptibility map of the
study area (Fig. 8a). Then, the LSI values were classified in
to five susceptibility zones of very low (-7.84 - -3.72), low
(-3.72 - -1.83), moderate (-1.83 - -0.28), high (-0.28 — 1.17)

Table 3 Landslide susceptibility class and training landslide pixels of the FR model

Landslide Susceptibility Class LSI NAP % of AP NTLP % of TLP Area in Km?
Very Low 2.89-531 17,782 8616 24 0468 16.0
Low 531-6.24 42,252 20474 232 4526 380
Medium 6.24-7.23 60,957 29.537 792 15451 54.9
High 7.23-8.39 57,574 27.898 1937 37.788 51.8
Very High 839-15.09 27,807 13474 2141 41.767 250

Total 206,372 100 5126 100 185.7

Note: LS/ Landslide susceptibility index, NAP Number of area pixel, NTLP Number of training landslide pixel
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and very high (1.17 — 4.52). The result from Table 4
showed that 8448%(15.7 km?®), 21.408%(39.8km>),
33.140%(61.5km?), 23.787% (44.2 km?) and 13.216% (24.5
km?) area fall in the very low, low, moderate, high and
very high susceptibility classes respectively.

Validation of the model

Without model validation, landslide susceptibility maps
will not be meaningful. As a result, validation of the pre-
dictive model is an important step for landslide suscepti-
bility mapping (Bui et al. 2012). A predictive model map
was constructed by overlying 80% of the landslides
(training) over the causative factors. This model was val-
idated using validation landslides (20%) that were not
used for building the model. There are various types of
validation techniques for landslide susceptibility maps.
In the current study, the performance of the LSMs pro-
duced by FR and WoE models were evaluated using
Area Under the Curve (AUC) and Landslide Density
Index (LDI).

Area under the curve (AUC)

The area-under-curve (AUC) method works by creating
success rate and prediction rate curves (Lee 2005). Land-
slide susceptibility maps can be validated by comparing
the susceptibility maps with both the training landslide
(80%) and validation landslide (20%). The success and
predictive rate curves can be created for both FR and
WoE models. The success rate curve is based on the
comparison between the predictive model and the train-
ing landslide. The predictive rate curve is based on the
comparison between the predicted map and the valid-
ation landslide. The Area Under the Curve (AUC) of the
success rate represents the quality of the model to reli-
ably classify the occurrence of existing landslides
whereas the AUC of the predictive rate explains the cap-
acity of the proposed landslide model for predicting
landslide susceptibility (Pamela et al. 2018). AUC was
calculated by reclassifying LSI into 50 classes with de-
scending order of the values of pixels in the study area
and combined with a landslide inventory. Then the rate
curves were drawn through the cumulative percentage
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of both the training and validation landslide (y-axis) and
cumulative area percentage (x-axis). The result showed
that both models exhibited very good performances.
However, the FR model is better with a success rate of
89.8% and a predictive rate of 88.2% than the WoE
model with a success rate of 86.5% and a predictive rate
of 84.8% (Fig. 9).

Landslide density index (LDI)

For validation of the model, landslide pixels which have
not been used for constructing the models are generally
considered as the future landslide area. In this work to
check the validation of the landslide susceptibility model,
the testing samples that consist of 20% of the landslide
pixels were overlaid over the landslide susceptibility
map. The landslide density index, which is the ratio
between the percentage of landslide pixels and the per-
centage of class pixels in each class on landslide suscep-
tibility map, was used to validate the model (Pham et al.
2015). If the value of the landslide density index is in-
creased from low to a very high susceptibility classes,
then the landslide susceptibility map is considered to be
valid. LDI can be calculated using the formulae in eq. 10
below and its output was presented in Table 5. The suit-
ability of any susceptibility map can be validated if more
percentages of landslides occur in the high and very high
susceptibility zones as compared to other zones (Fayez
et al. 2018).

ID — percentage of validation landslide pixels

percentage of area pixel
(10)

From Table 5, it can be observed that the landslide
density values for very high susceptibility classes are
2.743 and 2.993 with respect to WoE and FR models
which are remarkably higher than the other classes. In
addition to this, there is a gradual decrement in landslide
density values from very high to very low susceptibility
classes (Fig. 10). This indicates the validity of the land-
slide susceptibility map. Can et al. (2005) and Bai et al.

Table 4 Landslide susceptibility class and training landslide pixels for WoE model

Landslide Susceptibility Class LSI NAP % of AP NTLP % of TLP Area in Km?
Very Low —7.84 - =3.72 17,435 8448 23 0.449 15.7
Low -3.72--183 44,180 21408 200 3.902 39.8
Medium -1.83--028 68,392 33.140 1062 20.718 61.5
High -028-1.17 49,090 23.787 1911 37.281 44.2
Very High 1.17-4.52 27275 13216 1930 37651 245

Total 206,372 100 5126 100 185.7

Where LS/ Landslide susceptibility index, NAP Number of area pixel, NTLP Number of training landslide pixel
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(2010) stated that the landslide data should lie in either
the high or very high susceptibility classes for successful
validation of a LSM. Table 5, Figs. 10 and 11 illustrate
the characteristics of susceptibility classes for validation
of both FR and WoE models. In general, the presence of
the highest landslide percentage and density in the very
high landslide susceptibility class indicates the reliability
of the landslide susceptibility maps produced from FR
and WoE models.

Conclusion
Landslide posed a significant impact at Simada District
of South Gondar Zone in northwestern Ethiopia on

human and animal lives, agricultural lands, settlements,
infrastructures and also affected the social and economic
aspects of the rural community. To investigate this prob-
lem, landslide susceptibility mapping has been carried
out using FR and WoE models for proper land use plan-
ning, development and management of landslide prone
areas. For this, a landslide inventory map of the study
area with a total of 576 landslides was divided into train-
ing and validation landslides with 80 % and 20% respect-
ively. Seven landslide causative factors including slope,
aspect, curvature, lithology, land use, rainfall and dis-
tance to stream were considered to analyze, evaluate and
establish the spatial relation of these factors with

Table 5 Validation of the model using Landslide Density Index method

LS Class LSI NAP % of AP (m) NTLP % of TLP (n) LDI (n/m) NVLP 9% of VLP (0) LDI (o/m) Model

VL 2.89-5.31 17,782 8616 24 0468 0.054 8 0679 0.079 FR

L 531-6.24 42,252 20474 232 4526 0.221 91 7.725 0377
6.24-7.23 60,957 29.537 792 15451 0.523 188 15.959 0.540

H 7.23-8.39 57,574 27.898 1937 37.788 1.354 416 35314 1.266

VH 8.39-15.09 27,807 13474 2141 41.767 3.100 475 40.323 2993

VL -7.84--372 17,435 8448 23 0449 0.053 13 1.104 0.131 WoE
-3.72--1.83 44,180 21408 200 3.902 0.182 53 4499 0.210

M -1.83--0.28 68,392 33.140 1062 20.718 0.625 277 23514 0.710

H -028 - 1.17 49,090 23.787 1911 37.281 1.567 408 34635 1456

VH 1.17-4.52 27,275 13.216 1930 37651 2.849 427 36.248 2.743

Note: LS/ Landslide susceptibility index, NAP Number of area pixel, NTLP Number of training landslide pixel, LD/ Landslide density index, NVLP Number of
validation landslide pixel, VL Very low, L Low, M Moderate, H High, VH Very high
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Fig. 10 Landslide density of FR and WoE models for both training and validation landslide

landslides. From FR values and WoE contrast values, it
was possible to identify which factor classes are playing
a significant role for the occurrence of landslides in the
study area. The FR values that are greater than 1 and the
WoE contrast (C) values that are greater than 0 were
found in the factor classes of slope greater than 12°
curvature classes (-3.60) - (-0.001); aspect classes facing
towards N (0 — 22.5), NE (22.5 — 67.5) and E (67.5 —
112.5); distance to stream classes (< 150m); land use
classes (grazing land, river, sparse forest and bushes);
lithology classes (colluvial deposit, alluvial deposit,
weathered basalt and rhyolite), rainfall classes (813 —
901mm and 901 — 994 mm). The LSI map of the study
area was prepared based on FR values and WoE contrast
values in ArcGIS 10.4 using the spatial analyst tools of
raster calculator for both FR and WoE models. The LSI
map in each model was reclassified into five landslide

susceptibility classes of low, low, moderate, high and
very high based on the natural breaks method of classifi-
cation to produce the final landslide susceptibility maps.
The performance of the final landslide susceptibility
maps produced by FR and WoE models were validated
using Landslide Density Index (LDI) and Area Under
the Curve (AUC) values. The result revealed that the
very low, low, moderate, high and very high values of
the landslide susceptibility map are comparable with
Landslide Density Index. In case of AUC, the rate curves
were drawn using the cumulative percentage of the land-
slide in the Y-axis and cumulative percentage of map
area in the X-axis. The results showed that both models
exhibited very good performance. However, the FR
model, which showed a success rate of 89.8% and a pre-
diction rate of 88.2%, is better than the WoE model with
a success rate of 86.5% and a prediction rate of 84.8%.
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Fig. 11 Bar diagram showing the landslide percentages in different landslide susceptibility classes
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This study confirmed that the bivariate statistical
methods of FR and WoE models were found to be
simple and effective models for landslide susceptibility
mapping in the Guna mountainous chain of Simada
area. The landslide susceptibility maps of the study area
were prepared with a scale of 1:50,000 which can be
used by civil engineers, geologists, designers and
decision-makers for regional land use planning, site
selection and landslide prevention and mitigation
purposes.

Recommendation

The present study showed the importance of integrating
various factors that are responsible for landslide occur-
rence in the study area. However, the quality of landslide
inventory and the causative factor maps should be im-
proved with good quality in time and space. Landslide in
the study area has affected the local people who are
living near to mountainous area, valleys and gorges.
Their animals were died, houses and agricultural lands
were destroyed and both social and economic activities
were affected. Hence, besides preparing the landslide
susceptibility maps of the area, suggesting the necessary
preventive measures in the high and very high suscepti-
bility classes is very essential in order to reduce the im-
pact of future landslide hazards in the area. Hence, this
study recommends planting trees & vegetation, provid-
ing proper drainage, applying gabion and check dam, re-
locating people and creating public awareness. In order
to implement these remedial measures, further study on
the geotechnical properties of soils and rocks should be
conducted in this area.
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