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Abstract

The primary purpose of this study is to find out and discuss the characteristics, causes, and consequences of the
landslides of June 13, 2017, in the Rangamati district Bangladesh. Since rainfall triggered the landslides, debris flow
accounts for 40.45% of the landslides. Most of the landslides are small (mean 274. 2 m2 with a standard deviation of
546.1 m2). Size of 62.30% of the landslides was < 100 m2. The probability density of 50–100 m2 landslides is the
highest and with the increase of the size of landslides, probability density decreases. It indicates the chance of large
landslides (> 1000 m2) is low. Frequency ratio, logistic regression, and Spearman’s rank correlation were used to find
out the relationship between 15 landslide causal factors including elevation, slope, rainfall, aspect, land use/land
cover, land use/land cover change and distance to the road network with the occurrences and size of landslides.
Among the land use/land cover types built-up areas [frequency ratio (FR) = 5.67], among land-use land-cover
change types: vegetation to built-up (FR = 5.31) are the most prone areas to landslides. Logistic regression models
found six causal factors were statistically significant, including slope (Coefficient, ß = 1.05), and distance to the road
network (ß = 0.44). The size of the landslides had a significant relationship with five causal factors, including annual
rainfall (ρ = 0.52), and elevation (ρ = 0.24). Paired sample t-test on pre-event and post-event monthly incomes
revealed that landslides had a significant impact on different occupations of the local people. People involved in
primary economic activities like the slash and burn agriculture (locally known as jhum cultivation) and fishing are
the worst sufferers of landslides as they experienced a significant fall of income after the landslides. The findings of
the study would help the policymakers to mitigate landslide hazards in the Rangamati district.
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Introduction
Landslides are the third most crucial natural disasters in
the world, which cause damage to infrastructure and loss
of lives (Zillman 1999; Yilmaz 2009; Su et al. 2010; Chen
et al. 2017). Factors that are behind the landslides can be
divided into causative factors and triggering factors
(Guzzetti et al. 2012). Causative factors create a suitable

condition for landslides, which include slope, geology,
aspect, and land-use land-cover. Triggering factors initi-
ate the landslides, which include prolonged rainfall and
earthquake (Chen et al. 2017). Moreover, human activ-
ities, including building and road construction and intense
plantation agriculture on slopes, can accelerate it (Islam
et al. 2017a, 2017b). Due to the population growth and in-
creased interest in tourism in some parts of the world, the
rate of development in the hilly areas has increased. These
developments have increased the economic loss caused by
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landslides (Petley et al. 2005; Guha-sapir et al. 2011; Guz-
zetti et al. 2012).
In recent days, the number of deaths and damages to in-

frastructures caused by landslides has increased in
Chittagong Hilly Areas (CHA) of Bangladesh. In the last
30 years, landslides have caused the death of more than
350 people (Islam et al. 2017a, 2017b). A series of land-
slides occurred during June 2017 due to incessant rainfall
in 145 places of CHA, which caused 168 deaths, damaged
40 thousand houses. Rangamati, an indigenous hilly dis-
trict, suffered the highest negative consequences (WHO
2017) in its history. These landslides in the Rangamati dis-
trict claimed lives of 126 in total and severely damaged
6000 dwelling, roads, telecommunication systems. The
total economic loss was about USD 223 million (UNRC
2017; Ferdous et al. 2017; Haque et al. 2018).
As landslides have become an increasingly important

issue in the CHA, various works have been carried out
mostly on the landslide susceptibility mapping using dif-
ferent qualitative and quantitative techniques (Ahmed
2015a, 2015b; Ahmed and Dewan 2017; Rahman et al.
2017). These studies covered the Chittagong Metropol-
itan Area (CMA) and Cox’s Bazar municipality, which
are the two largest cities of CHA (Ahmed 2015a, 2015b).
Sifa et al. (2019) produced event-based landslide suscep-
tibility maps of the four Upazilas (Third-Order Adminis-
trative Boundary of Bangladesh) of the Rangamati
district (Second-Order Administrative District). They
used a remote sensing technique to prepare the landslide
inventory of June 13, 2017, landslides. Until now, no
study has developed a field investigation-based landslide
inventory and discussed the characteristics of June 13,
2017, landslides in the Rangamati district. Although
landslides pose a severe threat to human lives and cause
damage to the socio-economy of an area, very few stud-
ies have attempted to quantify the impact of landslides
on socio-economic systems (Mertens et al. 2017). In this
study, detailed research was carried out on the features
and implications of the June 2017 landslides in the three
most affected Upazilas (the third-order administrative
boundary of Bangladesh) (Rangamati Sadar, Kawkhali
and Kaptai) of Rangamati district. Our research has
three objectives: 1. Discussing the distribution and char-
acteristics of June 2017 landslides; 2. Finding the rela-
tionship of these landslides with different landslide
causative factors and 3. Discussing the consequences of
these landslides on socio-economy of the local people.
To show and discuss the distribution of the June 13,

2017, landslides frequency and probability densities were
used. Frequency ratio (FR) and logistic regression (LR)
were used to find out the relationship of landslides with
the 15 causal factors: elevation, slope, plan curvature
and profile curvature, rainfall, aspect, topographic wet-
ness index (TWI), stream power index (SPI), land use/

land cover, land use/land cover change (1998–2018), dis-
tance to road network, distance to drainage network,
distance to fault lines, geology, and normalized differ-
ence vegetation index (NDVI). To reveal the impact of
landslides on the socio-economy, we assess the effects of
June 13, 2017, landslides on the monthly income of the
local people.

Study area
Rangamati lies between 22°27′ and 23°44′ north latitudes
and 91°56′ and 92° 33′ east longitudes (Fig. 1). It is cir-
cumscribed on the north and east by India, on the south
by Bandarban district, and the west by Khagrachari and
Chittagong districts. Rangamati district encompasses
6116.19 km2 (Rangamati Hill District Council 2011) and is
the largest district in the country in terms of area. Ranga-
mati has ten Upazilas, and for this study, three of them
were selected: Rangamati Sadar, Kawkhali, and Kaptai
Upazila. These three were the most affected Upazilas by
landslides in the Rangamati district (Sifa et al. 2019). The
study area covers an area of 1145 km2 (Rangamati Sadar,
Kawkhali, and Kaptai encompass 547, 339, and 259 km2

respectively), of which 218 km2 is riverine, 497 km2 is
under forest vegetation (BBS 2011).

Geology and climate
The study area is underlain by tertiary and quaternary
sediments that have been folded, faulted, and uplifted
and then profoundly dissected by rivers and streams.
Dhihing, Dupi tila, Girujan clay, Bhuban, Bokabil, and
Tipam sandstone formation are present throughout the
study area. The highest susceptibility of landslides is in
Bhuban and Bokabil formation because there is an alter-
ation of sandstone and shale in their geology (Haque
et al. 2018). The bedrock and soil structure of these hills
are not stable, and that is why the areas are highly prone
to landslides (Islam et al. 2017a, 2017b).
Climatically, Bangladesh is in the tropical monsoon re-

gion, and its climate is characterized by high tempera-
tures, heavy rainfall, often excessive humidity, and fairly
marked seasonal variations (Banglapedia 2014). Ranga-
mati experiences tropical monsoon climate, and annual
average temperature varies from a maximum of 36.5 °C
to a minimum of 12.5 °C, and annual rainfall is 2673mm
with humidity level 71.6% (BBS 2011).

Socio-economic background
The population of the study area is around 243,999 (52%
tribal and 48% Bengali). The population density is about
97 per km2 and with a 1.1:1 male to female ratio. The
overall literacy rate of the study area is 56% (Rangamati
Sadar 64.5%, Kawkhali 44.2%, and Kaptai 60%) (BBS
2011). Most of the people in this area are involved in
agricultural activities, and large portions of tribal people
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practice slash and burn agriculture (locally known as
jhum cultivation) (Banglapedia 2015).

General description of the landslide
Landslides killed at least 152 people in CHA between 12
and 13 June 2017 (Prothom Alo 2017). These landslides
were triggered by excessive rainfall (510 mm rainfall be-
tween 12 to June 14, 2017 (~ 48 h)). The landslide events
affected 79,234 persons. Among these people, 34,000
were severely impacted as they lost their houses. In Ran-
gamati Hill district 118 (including two missing persons),
people have died as of June 21 while leaving 227 injured
(Prothom Alo 2017). As per the data of the Rangamati

district administration, about 12,450 families have suf-
fered losses (UNPO 2017), 1500 houses were destroyed,
and 2000 homes were partially damaged due to land-
slides (UNDP 2017).

Methodology
The study was divided into three parts: 1. Field Investi-
gation to record the landslides occurred on June 13,
2017. 2. Field Investigation to know the impact of land-
slides on the socio-economy of the study area. 3. To find
out the relationship of different causal factors with the
landslides occurred in the study area.

Fig. 1 Map of the Study Area and the Locations of Landslides
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Landslide inventory mapping
Landslide inventory includes detailed information about
the landslides, including the location, size, and type of
landslides. It can be historical, which included landslides
that occurred at different times in an area and event-
based, which contains the landslides triggered by a single
event. (Guzzetti et al. 2012).
Participatory field mapping was used to prepare an

event-based (June 13, 2017) landslide inventory (Samodra
et al. 2015; Rabby and Li 2019; Rabby and Li 2020). We
went through the newspaper articles and talked to the of-
ficials of the Disaster Management Department of the
People’s Republic of Bangladesh during July 2017 to select
the locations where field mapping would be carried out.
Detail procedure of the field mapping is given in Rabby
and Li 2019. This research mapped 131 landslides in the
study area (Fig. 1) and (Fig. 2) shows the images of some
of the landslides that caused casualties in the study area.
We recorded the location, size, and types of landslides.

Socio-economic survey
A detailed exploratory field investigation was conducted
in December 2018 to know the impact of landslides on
socio-economy. Field data were collected through semi-
structured questionnaires from the directly affected area
of ten unions under three Upazilas. A pilot survey was
conducted, and the questionnaire was modified accord-
ing to the responses. A purposive random sampling
method was conducted throughout the study area. A
total of 120 samples were collected and based on fatality
70 samples from Rangamati Sadar, 30 from Kawkhali,
and 20 from Kaptai according to (Eq. 1) under a 90%
confidence level. Z

n ¼ Zα=2 � σ
E

� �2
ð1Þ

Where n = sample size, Zα/2 = confidence level, σ =
standard deviation, and E = error.
Different socio-economic data were collected from the

survey, which includes monthly and source of incomes
of the respondents. These data were divided into three
times: before (during May), during (during June) and
after (during July) the landslides. Paired sample t-tests
were applied to find out whether the monthly income
before, during, and after the landslides were significantly
different. Statistical Package for the Social Science
(SPSS-20) software was used for this purpose.

Analysis of the characteristics and causes of landslides
Frequency density and probability density of landslides
were used to describe the characteristics of landslides.
These two densities show the density of landslides in an
area range. Frequency density is the ratio of the number
of landslides in a specific area range and the interval of

that area range. The probability density is calculated by
dividing frequency density with the total number of
landslides in the study area (Zhang and Huang 2018;
Zhang et al. 2019). As mentioned before in this study, 15
landslide causal factors were used, and they were
grouped into geological factors, topographical factors,
and environmental and anthropogenic factors.

Geological factors
In this study, the geology and distance to fault lines
(Fig. 3a and b) of the study area were used, provided by
the Geological Survey of Bangladesh (GSB) as the geo-
logical factor. Geology is related to the permeability and
strength of rocks and soil of an area and, thus, the land-
slides (Ayalew and Yamagishi 2005). In the study area,
there are eight geological formations. From which ava:
Valley Alluvium and Colluvium and lake are free of
landslides as they are either flatlands or waterbodies.
Landslides occur in six other structures. From which,
QTdd: Dihing and Dupi Tila Formation Undivided,
QTdt: Dupi Tila Formation and QTg: Girijuan Clay are
bedrocks. On the other hand, Tbb: Boka Bil Formation,
Tb: Bhuban Formation and Tt: Tipam Sandstone have
an alteration of sandstone and shale (Haque et al. 2018).
Fault lines indicate tectonic breaks, and it decreases

the strength of the rock. Generally, an area closer to the
Faultline is more prone to landslide than the area further
away (Netra et al. 2014). This study used the Euclidean
Distance tool in ArcGIS 10.7 to measure the distance to
the fault lines and divided it into five classes (Fig. 3b)
using the Jenks natural break method.

Topological factors
This study used elevation, slope, plan curvature and pro-
file curvature, aspect, distance to drainage network,
Topographic Wetness Index (TWI), and Stream Power
Index (SPI) as topological factors.
Elevation does not have a direct connection with land-

slides but can be a proxy factor (Wang and Li 2017). It
shows the local relief, and in higher elevation, anthropo-
genic activities like road density decrease (Ayalew and
Yamagishi 2005). Advanced Spaceborne Thermal Emis-
sion and Reflection Radiometer (ASTER) Global Digital
Elevation Map (GDEM) (30 m resolution) was used for
the elevation map of the study area (Fig. 3c). Like the
distance to the fault lines, the elevation was divided into
five classes (Fig. 3c). Later for all the continuous factors
(other than land use/land cover, land use/land cover
change, geology), Jenks’s natural break method in Arc-
GIS 10.7 was used to divide them into five classes.
Traditionally, the slope is the most crucial factor of

landslides. Generally, in lower slopes, landslides are rare.
With the increase of slope up to a certain extent, land-
slides increase (Chen et al. 2017). The study used the
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Slope tool of ArcGIS 10.7 to calculate the slope from
ASTER GDEM (Fig. 3d).
The concave and convex nature of the slope is shown by

the plan curvature, and profile curvature. The tensile force
along the slope increases with the increase of curvature.
Therefore, plan curvature, and profile curvature are asso-
ciated with slope instability (Wang and Li 2017). ArcGIS
10.7 was used to produce the plan curvature, and profile
curvature (Fig. 3e and f) maps and divided it into three
classes: concave, convex, and flat.
Aspect is the compass direction that a slope face. It is mea-

sured in degrees from the north in a clockwise direction and
ranging from 0°-360° (Bui et al. 2011). The duration of

sunlight, evapotranspiration, moisture retention, vegetation
cover, and distribution depend on the aspect of an area.
These things have indirect effects on landslides, and thus as-
pect indirectly controls the occurrence of landslides (Chen
et al. 2017). This study used the Aspect tool in ArcGIS to
produce the aspect map (Fig. 4a) of the study area.
River and streams play an essential role in the erosion

of nearby slopes of the water bodies and can indirectly
influence the landslides (Rahman et al. 2017). Here, the
Euclidean Distance tool of ArcGIS 10.7 was used. It
measures the distance of each raster cell from the river
or drainage network (ESRI 2017). Distance to the drain-
age network was divided into five classes (Fig. 4b).

Fig. 2 Images of Some of the Landslides and Associated Damages Occurred on the June 13, 2017: a. and b. Landslides in the Chittagong-
Rangamati Highway; c. A Collapsed School Building in Rangamati Sadar; d. Damaged Road and Nearby Bridge; e. and f. Damaged Plantation
Agriculture Fields
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Flow direction, flow accumulation, and soil moisture concen-
tration limit the distribution of landslides (Ayalew and Yama-
gishi 2005). Two proxy factors called TWI and SPI were used
in this study. TWI has a relationship with groundwater condi-
tions and soil moisture (Chen et al. 2017). It is the function of
the upstream contributing area per unit, and the slope of the
area (Eq. 2). TWI (Fig. 4c) is calculated from ASTER GDEM.

TWI ¼ ln
A

btanß

� �
ð2Þ

Where, A = Flow accumulation in square meters; b =
Pixel width over which water flows; ß = Slope in Degree.
SPI measures the erosive power of stream or water

flow. Higher the SPI value of an area, the more the
chance of landslides as it is related to steeper slope at
the foothill (Chen et al. 2017). SPI (Fig. 4d) is calculated
(Eq. 3) using ASTER GDEM.

SPI ¼ Atanß
b

ð3Þ

Fig. 3 Landslide Causative Factors: a. Geology; b. Distance to Fault Lines; c. Elevation; d. Slope; e. Plan Curvature; f. Profile Curvature. Qtdd =
Dihing and Dupi Tila Formation; Tbb = Boka Bil Formation; Tb = Bhuban Formation; Tt = Tipam Sandstone; ava = Valley Alluvium and Colluvium;
QTdt = Dupi Tila Formation; QTg = Girujan Clay
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Where, A = Flow accumulation in square meters; b =
Pixel width over which water flows; ß = Slope in Degree.

Environmental and anthropogenic factors
Rainfall, land use/land-cover (2018), land use/land cover
change (1998–2018), distance to road network, and Nor-
malized Difference Vegetation Index (NDVI) were used
as environmental and anthropogenic factors.
Data of 5 weather stations of Bangladesh Meteoro-

logical Department (BMD) had been used to produce an
annual rainfall map of the study area. Kriging
interpolation method was used to produce a spatial map
of the annual rainfall (Fig. 4e).

This Study used two Landsat images (Landsat5- Date
of Acquisition: 24/12/1998; Landsat8- Date of Acquisi-
tion: 29/11/2018) to assess the spatial and temporal land
use/land cover change of the study area. All the images
were cloud-free, and necessary geometric and radiomet-
ric corrections were performed. A modification of the
Anderson scheme Level-I method was used (Anderson
1976). The image classification was conducted using a
supervised maximum likelihood classification (MLC) al-
gorithm (Li et al. 2014; Traore et al. 2018). For each cat-
egory, 60 polygons were digitized based on the visual
interpretation of the locations on Google Earth and the
image itself. The land cover maps were validated using

Fig. 4 Landslide Causative Factors: a. Aspect; b. Distance to Drainage; c. TWI; d. SPI; e. Rainfall; f. Land use/Land cover
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Rangamati district guide maps and Google Earth images.
Based on the knowledge obtained from the study area
and the spectral characteristics of the satellite images,
four land-cover categories, namely built-up, water bod-
ies, vegetation, and bare land, were classified. However,
in the classified types obtained from the MLC algorithm,
misclassification was observed. A post-classification refine-
ment to improve the accuracy of the classification was ap-
plied (Dewan and Yamaguchi 2008). Ground truth
information was also useful for refining the process. Finally,
to remove the salt-and-pepper effect, a 3*3 majority filter
was applied to the classified land covers (Fig. 4f) (Harris
and Ventura 1995; Lillesand and Kiefer 1999).
A post comparison of change was used to determine

the land/use land/cover changes. It is the most common
approach to compare data from different years (Yuan
et al. 2005. The change detection matrix for the period
was produced using pixel by pixel method (Jensen and
Ramsey 1987). Finally, it was presented as a land/use
land/cover change (1998–2018) map (Fig. 5a).
In this study, to show the impacts of vegetation on

landslides, the normalized vegetation index (NDVI) was
mapped (Fig. 4b) from LandSat 8 level 2 imagery of 11/
10/2017. The equation for NDVI is given below (Eq. 4)

NDVI ¼ IR − R
IRþ R

ð4Þ

Where IR is infrared value, and R is the red portion of
the electromagnetic spectrum. NDVI value ranges from
− 1 to 1. Higher the value, the higher is the vegetation. A
negative value indicates water bodies. A lower positive
value indicates bare land and urban areas.
Roads help in runoff concentration, and road cuts

damage the slope structure. If the necessary precaution-
ary measures are not taken, landslides can occur near
the roads (Chen et al. 2017). The study used the Euclid-
ean distance tool of ArcGIS 10.7 to measure the distance
to the road network (Fig. 5c).

Percentages of landslides and frequency ratio
In this study, we used frequency ration (FR) and lo-
gistic regression (LR) models. These two models will
not directly imply the causes of landslides in the
study. It is because the mechanisms of landslides are
very complicated (Rahman et al. 2017). Nevertheless,
these two models will give an idea of which factors
are contributing to landslides. FR is a bivariate statis-
tical model, whereas LR is a multivariate model
(Althuwaynee et al. 2014). The FR model assesses the
relationship between landslide occurrence and one
causal factor at a time (Chen et al. 2017). LR deter-
mines the relationship of landslide occurrence and
multiple causal factors (Ayalew and Yamagishi 2005).

The frequency ratio (Eq. 5) shows the relationship be-
tween landslide inventory (landslide locations) and land-
slide causal factors. It is the ratio of the area where
landslides occurred to the total area (Vakhshoori and
Zare 2016). FR > 1 for a class of the factors indicates an
association with landslides, while FR < 1 means no asso-
ciation. Higher the FR value, the greater is the contribu-
tion of that factor to landslides. In the FR model, we
must divide each of the causal factors into user-defined
classes (Vakhshoori and Zare 2016). For example, we
can split a factor i into j number of sub-classes. The FR
model gives FR values for each of the sub-class. It helps
to understand which sub-class of the factor has more as-
sociation with landslides than the other sub-classes. It
cannot give the overall association of a factor with the
landslides (Chen et al. 2017).

FR ¼
Nij

Ntotal

� �

Aij

Atotal

� � ð5Þ

Where, Nij = the number of landslide pixels within the
jth subclass of factor i
Ntotal = the total number of landslide pixels in the area
Aij = the total number of pixels of the jth subclass of

the factor
Atotal = the total number of pixels in the study area
FR cannot determine the overall contribution of a fac-

tor to landslides. Therefore, the LR model was used to
show the association of causal factors with landslides in
the form of coefficients (Ayalew and Yamagishi 2005).
The main aim of the LR model is to find out the best fit-
ting model which describes the presence of landslides
over an area and its relationship with different causal
factors (Althuwaynee et al. 2014). It generates coeffi-
cients (Eq. 6) for the causal factors. Logit transformation
(Eq. 7) gives the probability of the presence of landslides.
Finally, the odd ratio (Eq. 8) helps to understand the as-
sociation of causal factors with the landslides. LR model
deals with a dichotomous (0,1) variable. Here, landslide
inventory shows the location of landslides or indicates
the presence (1) of landslides. The same number of non-
landslide (0) locations were generated randomly using
ArcGIS 10.7 for the LR model. Finally, the study had
262 locations (131: landslides and 131: non-landslides),
which were the dependent variables, and 15 causal fac-
tors were the independent variables. Forward stepwise
LR model in IBM SPSS 25 software was used.

Y ¼ ß0 þ ß1X1 þ ß2X2 þ…þ ßnXn ð6Þ
Where,
Y = Linear combination of landslide causal factors
ß0 = Constant of the equation
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Xi = Causal Factors
ßi = Coefficient of the causal factors

P ¼ eY

1þ eY
ð7Þ

Where,
P = Probability of the presence of dependent variable

O ¼ P
1 − P

ð8Þ

Where,

O =Odd Ratio (It is the ratio of the probability of ab-
sence and presence of landslides)
The size of the landslides did not have a linear rela-

tionship with the 15 causal factors. Therefore, we
employed the Spearman’s rank correlation was used to
show the correlations. The Spearman’s rank correlation
shows the monotonic relationship since it measures the
strength and direction of association between two vari-
ables (Davis 2002; Laerd Statistics 2018). In this study it
is used to check whether the increase or decrease of any
causal factor had association with the increase or de-
crease of the size of landslides. Other than geology,

Fig. 5 Landslide Causative Factors: a. Land use/Land cover Change (1998–2018); b. NDVI; c. Distance to Road Networks
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land-use land-cover (2018) and land-use land-cover
change (1998–2018) were continuous data. So, the study
used landslide density instead of categorical input for
these three factors. Extract Values to Point tool of Arc-
GIS 10.7 was used to extract the values of different fac-
tors based on the landslide locations. Before that, we
converted vector layers of geology to raster layers since
all other factors were in raster formats.

Results and discussion
Characteristics of landslides
In the study area, flow is the dominant type of landslide
(Flow: 53; Slide: 52; Fall: 20 and Complex: 6) followed by
slide. Varnes (1978) classification scheme was used in
this study. In this scheme, primarily landslides are classi-
fied based on the type of movement, and later type of
material can be included for detail classification. We
considered the type of movement for classification. Most
of the landslides occurred near the Chittagong-
Rangamati highway and near to settlements. Debris and
materials removed the landslides were cleared very
quickly by the local authority and people. It hampered
the use of a detailed classification scheme. Excessive
rainfall can cause the saturation of the soil, and debris
flow can occur in these slopes (Chen et al. 2017). All the
landslides were triggered by rainfall, and that explains
why the flow was the dominant type of landslides. The
slide is the second most dominant type of mass move-
ment after the flow in the study area. From two major
types of slides: rotational and transitional slides, this
study found that all landslides were rotational slides.
Fieldworks revealed that due to excessive rainfall, the
surface materials were already removed, and mud or
debris flow already occurred. Later water started to enter

through the pore spaces and created a zone of weakness
above the stable material. This resulted in the rotational
slides in the study area. Falls occurred mainly along the
Chittagong-Rangamati highway and Kaptai Upazila, where
the slope is comparatively steeper. Complex landslides
were mainly a combination of a couple of landslides, and
in the study area, large landslides (> 500m2) were classi-
fied as complex types of landslides. Most of the landslides
were small (mean 274. 2 m2 with a standard deviation of
546.1 m2). The most massive landslide had an area of
3422.4m2 while the minimum area of the landslide is
14.6m2. Around 61% (Table 1) of the landslides have a
size below 100m2. The frequency density shows that with
the increase of size, the number of landslides reduces ex-
cept for class (500–1000m2). Generally, more massive
landslides can cause more casualties and damages to infra-
structures. However, our field investigation suggests that
small landslides can cause deaths. In the study area, many
people build houses at the foothills. They cut the nearby
hills to increase the size of the homestead and to create
new dwellings, and thus they damage the slopes. Neces-
sary protective measures were not taken by the govern-
ment or by the local people to protect them from
landslides. Probability density (Table 1) indicates that in
the study area for landslides with an area between 50 and
100m2, the probability density is comparatively high. The
probability density for 500–1000m2 area class is lower
than the previous area class, although the frequency dens-
ity is higher than in the last class area.
The probability density (Fig. 6b) decreases with the in-

crease of landslide area, while after a specific size (after
400 m2), it starts to increase, and then from 1000 m2 it
starts to drop. So, in the study area, the probability of
landslides with a size < 50m2 and 400–1000m2 are

Table 1 Frequency Density and Probability Density of June 2017 Landslides in Rangamati

Area (m2) Interval
(Area Range)
(i)

Number
(Landslides)
(n)

Percentage (%)
(Landslides)
(p)

Frequency Density (m−2),
Fd¼ðni Þ

Probability Density (m− 2),
Pd¼ðFdt Þ

0–50 50 54 41.5 1.1 × 100 8.4 × 10−3

50–100 50 27 20.8 5.4 × 10−1 4.1 × 10−3

100–200 100 13 9.9 1.3 × 10−1 9.9 × 10− 4

200–300 100 5 3.9 5.0 × 10−2 3.8 × 10− 4

300–400 100 7 5.4 7.0 × 10−2 5.3 × 10− 4

400–500 100 5 3.9 5.0 × 10−2 3.8 × 10−4

500–1000 500 13 9.9 2.6 × 10−2 2.0 × 10−4

1000-2000 1000 2 1.5 2.0 × 10−3 1.5 × 10−5

2000-3000 1000 3 1.7 3.0 × 10−3 2.3 × 10−5

3000-4000 1000 2 1.5 2.0 × 10−3 1.5 × 10−5

t total number of landslides in the study area
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higher than the other area classes. Small landslides (< 50
m2) are abundant in Rangamati Sadar; as mentioned
earlier in these areas, people damage the structure of
slopes. While more massive landslides (> 1000 m2)
mainly occurred along the Chittagong Rangamati High-
way and in Kaptai Upazilas.

Factors affecting landslides
In twenty years (1998–2018), there was no land use/land
cover change in the study area. 62.06% of the landslides

(Table 2) occurred in these areas. The rest of the land-
slides occurred in areas where land use/land cover was
transformed from one type to another. From these land-
slides, 22.05% occurred in areas where vegetation was
transformed into either bare land or built-up areas. In
terms of land use/land cover, most of the landslides oc-
curred in land use/land cover type: vegetation (Table 2).
Vegetation land use/land cover type includes shrubland,
forests, and grassland. 14.87% of the landslides occurred
in bare land, while 14.88% of the landslides occurred in

Fig. 6 Size Distribution of Landslides in Logarithmic Forms: a. Cumulative Landslide Number and Size Distribution b. Probability Density and
Size Distribution
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Table 2 Frequency Ratios of Landslide Causal Factors

Causal Factors Classes Area (%),
Aij

Atotal

Landslides (%),
Nij

Ntotal

FR,
Nij=Ntotal

Aij=Atotal

Aspect Flat 0.00 0.00 0.00

North 17.80 5.73 0.32

Northeast 11.12 12.50 1.12

East 11.17 17.19 1.54

Southeast 10.22 12.50 1.22

South 10.63 15.10 1.42

Southwest 12.37 16.67 1.35

West 11.79 6.25 0.53

Northwest 10.33 10.94 1.06

North 4.58 3.13 0.68

Elevation (m) 0–50 47.64 23.96 0.50

50–100 34.34 50.00 1.46

100–170 10.71 21.88 2.04

170–274 5.51 4.17 0.76

> 274 1.81 0.00 0.00

Slope (°) 0–5 25.71 8.85 0.34

5–10 30.28 25.00 0.83

10–16 24.32 28.13 1.16

16–24 14.91 28.13 1.89

24–59 4.78 9.90 2.07

SPI 2–5 22.19 15.63 0.70

5–7 38.22 44.79 1.17

7–8 28.49 32.29 1.13

8–11 8.69 6.77 0.78

> 11 2.43 0.52 0.21

TWI 6–10 48.98 68.23 1.39

10–12 26.20 25.52 0.97

12–15 12.36 5.21 0.42

15–19 11.41 1.04 0.09

> 19 1.05 0.00 0.00

Plan Curvature Convex 41.09 43.75 1.06

Concave 50.52 42.53 1.19

Flat 16.38 5.73 0.35

Profile Curvature Convex 41.12 45.83 1.11

Concave 44.71 50.00 1.12

Flat 14.17 4.17 0.29

NDVI −0.1-0.1 17.99 1.59 0.09

0.1–0.2 6.98 8.47 1.21

0.2–0.3 20.42 36.51 1.79

0.3–0.4 31.87 34.92 1.10

0.4–0.5 22.74 18.52 0.81

Distance to Road Network (m) 0–500 10.50 72.49 6.90

500–1000 17.01 14.81 0.87
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Table 2 Frequency Ratios of Landslide Causal Factors (Continued)

Causal Factors Classes Area (%),
Aij

Atotal

Landslides (%),
Nij

Ntotal

FR,
Nij=Ntotal

Aij=Atotal

1000-2000 23.04 8.99 0.39

2000-6000 42.82 3.70 0.09

> 6000 6.63 0.00 0.00

Distance to Drainage Network (m) 0–500 8.01 12.70 1.59

500–1000 7.99 16.40 2.05

1000-2000 16.14 21.16 1.31

2000-5000 50.86 34.92 0.69

> 5000 17.01 14.81 0.87

Distance to Fault Lines (m) 0–500 1.88 4.76 2.54

500–1000 6.88 5.29 0.77

1000-5000 45.27 66.14 1.46

5000-10,000 38.65 23.81 0.62

> 10,000 7.33 0.00 0.00

Rainfall (mm) 2370-2450 32.16 11.9 0.37

2450-2525 24.40 63.69 2.61

2525-2607 21.11 15.41 0.73

2607-2707 9.78 9.00 0.92

> 2707 12.55 0.00 0.00

Geology Dihing and Dupi Tila Formation 4.65 19.07 4.10

Boka Bil Formation 28.92 30.41 1.05

Bhuban Formation 8.97 16.49 1.84

Tipam Sandstone 12.41 27.84 2.24

Valley Alluvium and Colluvium 0.46 0.00 0.00

Dupi Tile Formation 14.73 3.61 0.25

Lake 26.46 0.00 0.00

Girujan Clay 3.41 2.58 0.76

Land use/Landcover Vegetation 73.60 70.26 0.95

Waterbodies 18.40 0.00 0.00

Bare land 5.38 14.87 2.77

Built up 2.62 14.88 5.67

Land use Change Water-Vegetation 5.31 2.05 0.39

Water- Bare Land 0.70 0.51 0.73

Water-Built up 0.25 0.51 2.02

Vegetation-Water 0.00 0.00 0.00

Vegetation-Bare land 3.54 12.82 3.62

Vegetation-Built up 1.74 9.23 5.31

Built up- Vegetation 0.81 1.54 1.91

Built up-Bare land 0.23 0.51 2.20

Bare land-Vegetation 2.09 7.18 8.65

Bare land- Built up 0.45 3.59 3.44

No Change 84.88 62.06 0.73
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built-up areas. Bhuban and Boka Bil formations
accounted for 46.9% of the landslides in the study area.
Due to the presence of alteration of sandstone and shale,
these two geological formations are susceptible to land-
slides. The Tipam Sandstone formation is comprised of
sheets of sand and formed near the rivers (Ahmed and
Dewan 2017). 27.84% of the landslides occurred in the
Tipam Sandstone areas. In this formation, the elevation
is comparatively low, and the slope is gentle. It indicates
that other factors may have more impacts on the occur-
rences of landslides than geology. In the study area, the
highest slope is 58.58°. 91% of the landslides occurred in
areas where slope ranged from 5 to24 °. Generally, the
steeper the slope, the harder the structure of the rock.
Comparatively, harder rocks protect the slope from fail-
ure (Yilmaz 2009). In the study area, all the landslides
occurred within 274 m elevation (Table 2), from which
50% occurred in areas where elevation ranged from 50
to 100 m. Like slope after certain elevation landslides
were rare due to rock structure. There is not much vari-
ation (ranges from 2370 to 2810 mm) in annual rainfall
in the study area. Therefore, most of the landslides
(63.69%) (Table 2) occurred where annual rainfall ranged
from 2450 to 2525mm. Landslide occurrences had an
inverse relationship with the distance to the road net-
work (Table 2). Most of the landslides (96.29%) occurred
within 2000 m distance to the roads. Like the distance to
the road networks, landslides had an inverse relationship
with the distance to the drainage network (Table 2).
Normalized Difference Vegetation Index (NDVI) value
ranges from − 0.1-0.5 (Table 2) in the study area. Nega-
tive values of the NDVI (values approaching − 1) corre-
sponds to water, while values near to zero (− 0.1 to 0.1)
generally correspond to barren areas. Low, positive
values mean shrub and grassland (approximately 0.2 to
0.4), while high values approaching 1 designate temper-
ate and tropical rainforests. Based on the NDVI (0.2–
0.5), most of the landslides (89.95%) occurred in shrub
and grassland covered areas. While 8.47% of the land-
slides occurred in built-up areas or bare lands where
NDVI values ranged from 0.1–0.2. As discussed before,
most of the landslides occurred within 2000 m distance
to the road network, and these areas are mainly close to
vegetation. That is why this type of land use and land
cover accounts for a higher percentage of landslides.
Most of the landslides occurred in areas where TWI
ranges from 6 to 10 (Table 2). Very few landslides oc-
curred in areas with higher TWI values (> 12). TWI
shows the soil moisture distribution and high TWI
values indicate higher water accumulation. During heavy
rainfall, these areas become highly susceptible to land-
slides (Yilmaz 2009). 44.79% (Table 2) of the landslides
occurred in areas where SPI value ranges between 5 and
7. From the above discussion, we cannot point out

which factors create conducive conditions for landslides.
Some of the findings are opposite to the common know-
ledge about the factors of landslides. Landslides may
occur in one class or category of the causal factor, for
example, vegetation; a land-use land-cover type experi-
enced, most of the landslides in the study area. Still, it
does not necessarily mean that areas under vegetation
are highly susceptible. That is why we used FR to under-
stand the effects of different causal factors on the occur-
rences of landslides. All types of land use/land cover
change (Table 2) had a higher FR value except water
bodies to vegetation and bare land. It indicates that
water bodies were filled up to create land, and as they
are flatlands, no landslide occurred there. Vegetation to
built-up area and vegetation to bare land had very high
FR (5.31 and 3.62 respectively) values the removal of
vegetation and development activities in the bare land
damaged the slope structure and created a conducive
condition for landslides. The built-up area had an FR
value of 5.67, while bare land had 2.77 (Table 2). There-
fore, these two-land use/land cover types are highly sus-
ceptible to landslides. In Rangamati Sadar, slums and
low-quality housing were built near the hills. People cut
the vegetation on the slopes and the foothills, which
damage the slope structure. It also reduces the water re-
tention capacity of the soil. Larger landslides occurred in
areas under rubber plantation. Largest landslides (>
3000 m2) occurred in a rubber garden where natural for-
ests were cleared, and new rubber trees were planted.
The roots of the newly planted rubber trees did not go
deep, and the coverage was not as dense as the natural
forest. Therefore, it created a conducible condition for
landslides. Excessive rainfall started from June 7, 2017,
triggered the landslides. Before the landslides, the study
area experienced around one-third of its annual rainfall
within 5 days (Haque et al. 2018). 510 mm (20 in.) rain-
fall occurred in southeastern Bangladesh between June
12 and 14 when landslides triggered by a heavy down-
pour (Prothom Alo 2017). Like the percentage of land-
slides (Table 2), the Dihing and Dupi Tila formation had
higher FR value (4.10), and the Tipam Sandstone and
Bhuban Formation have higher FR values as well (2.24
and 1.84 respectively).
Slope (Table 2) shows a different pattern from the per-

centage of landslides as slope > 16° had a higher prob-
ability of landslides (FR > 1.89). (Table 2) shows that
elevation class 100–170 m had FR value of 2.04, which
means that the areas within this elevation had high sus-
ceptibility. (Table 2) Distance to road and distance to
river networks show the same pattern as the percentage.
It shows that areas near to the road and drainage net-
works are more prone to landslides. Annual rainfall, SPI,
and TWI (Table 2) had the same pattern as the percent-
age (Table 2). Built-up area and bare land were highly
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prone to landslides as FR of NDVI (Table 2) show that
NDVI value ranges from 0.1 to 0.3 have FR > 1.21. From
the above discussion, it is evident that land use/ land
cover change and some land-use types and anthropo-
genic activities like road construction create conducive
conditions for landslides in the study area.
In the stepwise forward process in each of the steps,

one conditioning factor is added and checked whether
Pseudo R square value (Table 3) gets a significant in-
crease. Model summary of the six steps (Table 3 and
Table 4) shows that in step 6, the Nagelkerke R square
value is 0.679, and in step 7, it does not get a significant
increase and thus the stepwise process stops.
Coefficients (B) (Table 4) for distance to road network

(ß = 0.44) elevation, distance to drainage network (B =
0.76), SPI (ß = -1.06), land use/land cover (ß = 0.70) and
slope (ß = 1.05) are significant. In the FR model, it was
found that a subclass of different factors had an associ-
ation with the landslides. We did not identify the overall
contribution of the factor, and the LR model helped in
this purpose. It also indicates that some factors sub-class
had an association with landslides, but as a factor, they
did not. The odds ratio (Table 4) for slope (3.78), dis-
tance to drainage (1.96), and elevation (1.47) were high.
The odds ratio for slope is 3.78, which indicates an area
with a high or steeper slope had a 278% higher chance
of landslides than the areas with a low or gentle slope.
In the FR model, it was found that up to a certain slope,
the association of slope with landslides increases, and
then it decreases. But in the LR model, the coefficient and
odd ratio cannot determine this extent. It justifies the use
of using both FR and LR models in the study. The odd ra-
tio for distance to drainage network was 1.96, and it
means that with the increase of distance to drainage the
chance of landslides increases by 96%. In the FR model,
the same pattern was found because FR values increased
with the increase of distance to the drainage network.
From 15 factors, (Table 5) slope (ρ = 0.182), rainfall

(ρ = 0.522), elevation (ρ = 0.235), distance to drainage
(ρ = 0.261), distance to the road (ρ = − 0.26) and geology
(ρ = 0.221) had a significant rank correlation with the
size of landslides. Higher frequency ratio value for differ-
ent land use/land cover class and land use/land cover

change indicates the influence of land use and the land
cover on landslide occurrence. Still, they did not have a
significant correlation with the size of landslides. Geol-
ogy, land use/land cover, and land use/land cover change
were categorical variables, and the study used the density
of landslides as input variables for correlation analysis.
So, it did not show the direct impact of these factors.
Other factors were continuous variables, and direct cor-
relations with landslide sizes were computed.

Consequences of landslides
Landslides pose a severe physical and environmental
threat to the communities living in the landslide-prone
areas (Auflič et al. 2018). Loss of life is the most signifi-
cant socio-economic impact of landslides, and another
essential effect is the loss of livelihood. This study inves-
tigated whether June 13, 2017, landslides had any impact
on the livelihood of the local people. Jhum cultivation
(45.8%) is the main occupation of the local people,
followed by business (12.5%) and service (18.3%). Jhum
cultivation is a common agricultural practice in CHA, in
which farmers clear a slope and plant crops in one sea-
son, and next season keep it, fellow. To clear the slope,
they generally burn the forest. This study shows that
during June, after the landslides, 54.55% (Fig. 7) of the
jhum cultivators became jobless. A social survey of the
study revealed that landslides affected their agricultural
land, and they lost crops as well. In the study area, only
2% of the people are involved in transportation sectors
(mentioned as drivers in Fig. 7), and they were the most
affected community. Due to landslides, most of the roads

Table 3 Model Summary for Six Steps of LR Model

Step -2log Likelihood Nagelkerke R Square

1 347.67 0.57

2 325.09 0.61

3 304.86 0.64

4 296.35 0.65

5 286.41 0.67

6 280.99 0.68

Table 4 Results of Logistic Regression

Conditioning Factors B S.E. Wald df Sig. Exp(B)

Step 6 Distance to Drainage 0.76 0.26 8.568 1 0.003 1.96

Elevation 0.50 0.14 12.877 1 0.000 1.47

Land use/Land Cover 0.70 0.15 20.939 1 0.000 1.08

Distance to Road 0.44 0.05 87.428 1 0.000 0.82

Slope 1.05 0.23 20.476 1 0.000 3.78

SPI −1.06 0.45 5.351 1 0.021 .01

Constant −4.146 0.12 12.155 1 0.000 .016

Table 5 Spearman’s Rank Correlation Between Different Factors
and Size of the Landslides

1 2 3 4 5 6 7 8

ρ 0.18* 0.15 −0.09 0.52* 0.10 0.24** −0.04 0.26*

9 10 11 12 13 14 15

ρ −0.05 0.22* −0.03 0.22 0.12 0.11 −0.26

ρ = Spearman’s Rank Correlation; * = P value is Less that 0.05; ** = P value is
less than 0.01. 1 = Slope; 2 = SPI; 3 = TWI; 4 = Rainfall; 5 = NDVI; 6 = Elevation;
7 = Distance to the Road Network; 8 = Distance to Drainage Network; 9 = Land-
use land-cover Change; 10 = Geology; 11 = Land-use land-cover, 12 = Aspect;
13 = Plan Curvature; 14 = profile curvature; 15 = Distance to Fault Lines
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were closed for several days, and therefore, they become
jobless.
The present study collected the monthly income be-

fore (May), during (June) and after (July) landslides. The
fluctuation of income for 3 months would give an idea
of how the landslides affected the income of local
people. For all the occupations, monthly income
(Table 6) dropped during June when landslides occurred.
Some jobs, like business and transportation, recovered
soon. After the landslides, the government cleared the
debris from the roads and repaired the streets. As a

result of that, the transportation system returned to its
original state very soon. The business and transportation
sector were affected the most as people involved in these
two activities lost 19.1% and 27.9%, respectively. As
mentioned earlier, they recovered very soon while people
engaged in jhum cultivation failed to regain their earn-
ings, and the earnings reduced by 12.2%.
The mean monthly incomes (Table 7) for different

jobs before landslides were significantly different from
the mean monthly incomes of during and after land-
slides for all the jobs except jhum cultivation and

Fig. 7 Change of Occupation of the Respondents After the June 13, 2017 Landslides in three Upazilas of Rangamati District

Table 6 Monthly Income of the Landslides Affected People before (May), During (June) and After (July) Landslides

Occupation Monthly Income ($)
(May)

Monthly Income ($) (June) Monthly Income ($) (July)

Day Laborer 112.7 92.9 110.4

Business 313.7 253.9 265.3

Service 322.7 270.5 243.3

Jhum Cultivation 140.6 123.4 122.1

Fishing 123.4 116.7 108.8

Driving 130.6 94.1 133.1

Others 182.0 163.7 170.0
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transportation. For jhum cultivations, before and during
landslides, monthly payments were not significantly dif-
ferent, but after landslides during July, monthly income
reduced significantly. It indicates the long-term effects
of landslides and jhum cultivators were not able to re-
cover from the loss they suffered from the landslides.
Fishing has the same pattern, and we can say that land-
slides did not pose an impact on primary activities just
after the occurrence, but in the long run, landslides had
effects. On the other hand, people who are involved in
transportation sectors (mainly drivers of local transpor-
tation) recovered very quickly as the income before and
after are significantly different, and (Table 6) shows that
the mean income increased.

Conclusion
This research investigates the characteristics, causes, and
consequences of June 13, 2017, landslides in Rangamati
Sadar, Kaptai, and Kawkhali Upazilas of the Rangamati
district. Analyses of the types and the size distribution
helped to understand the characteristics of the land-
slides. FR and LR models gave an idea about the causes
of landslides, while the pre-event and post-event income
analysis of the local people revealed the consequences of
landslides. Flow and rotational slides account for around
80% of the landslides of the study area. Excessive rainfall
in a short period causes the flow and rotational slides in
the study area. On the other hand, the results of the size
distribution analysis demonstrate that most of the land-
slides were shallow and small (< 100 m2) in size. Smaller
landslides mainly occurred in areas near to settlements
and roads. Comparatively, massive landslides (> 2000
m2) happened in the plantation agriculture fields. These
findings of types and size of landslides can be linked
with the recent land use/land cover change. Trees in the
plantation agriculture fields are not capable enough to

protect the top surface from erosion and disintegration,
which in turn help in the initiation of massive landslides.
These landslides bring economic consequences since it
destroys the whole plantation filed. On the other hand,
comparatively smaller landslides can be fatal in the study
area since Rangamati Sadar Upazila low-income people
build slums near the foothills. Small landslides can des-
troy these dwellings and cause fatality very easily. This
study shows the importance of carrying out more re-
search to reveal the impact of land use/land cover
change on landslides. Results of the FR and LR methods
highlight that causal factors like slope, distance to the
drainage and road networks, land use/land cover, and
land use/land cover change are the most critical factors
that control the occurrences of landslides. This study
provides the results of Spearman’s rank correlation be-
tween the dimension and causal factors of landslides.
These findings show that the same set of causal factors
does not necessarily control occurrences and sizes of
landslides. Generally, most of the landslide related stud-
ies try to find out the relationship between causal factors
and landslide occurrences while present research deals
with both occurrence and dimensions. It gives a broader
understanding of landslide of the study area.
Our study has revealed the consequences of landslides

on the local economy, while research on consequences
of landslides are very rare in CHA (Sultana 2020). Land-
slides hampered the primary economic activities, includ-
ing fishing and jhum cultivation. It has long term effects
on primary economic activities since both land and
crops are destroyed. One of the exciting findings of this
research is that secondary and tertiary activities are not
affected for a long time compared to primary economic
activities. However, these two types of economic activ-
ities are affected immediately after the landslides. Most
of the secondary and tertiary financial workers get their
payment on a day to day basis in the study area; there-
fore, they are affected immediately.
Our study is reasonably consistent with the study of

Sifa et al. (2019). However, their study used two bivariate
methods: frequency ratio and weight of evidence
methods for landslide susceptibility mapping of the
study area. On the other hand, our research used a bi-
variate: FR and a multivariate approach: LR to find out
the causes of landladies. Moreover, our study used field
investigation-based landslide inventory, while Sifa et al.
(2019) used remote sensing-based landslide inventory.
Nevertheless, the results of FR methods are consistent in
both the studies.
The findings of our study are essential for the policy-

makers, and urban and regional planners to formulate
policies that would mitigate the problems caused by the
landslides in the study area. Policymakers must think
about the lower-income people living in the foothills.

Table 7 Paired Samples Test for Detecting Significant
Differences in Income

Occupation Pair Type t score Significance (2-tailed)

Business Before-During 7.6 0.000

Before- After 27.5 0.000

Service Before-During 9.1 0.000

Before- After 12.2 0.161

Jhum Cultivation Before-During 1.4 0.000

Before- After 4.6 0.026

Fishing Before-During 1.1 0.000

Before- After 3.7 0.000

Driving Before-During 7.8 0.844

Before- After −0.2 0.000

Other Before-During 4.5 0.001

Before- After 3.3 0.000
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These people should be relocated somewhere else of ne-
cessary precautionary measures should be taken so that
landslide cannot damage their houses and cause fatal-
ities. Local authorities should make the local people
aware of the danger of landslides as well as the causes so
that they will not damage the slope instability while in-
creasing the size of their homesteads. By providing the
results, the present study has made the policymakers
and the plantation farm owners aware of the impacts of
plantation agriculture on landslides. Indiscriminate and
unplanned land use/land cover change will create more
problems; the economic loss and human fatalities will
surpass the short financial gains of plantation farming.
Therefore, this study recommends that a long-term land
use/land cover planning is essential for the study area.
The main limitation of this study is that field investiga-

tion mainly covered accessible areas for landslide inven-
tory mapping. Many landslides may have occurred in the
inaccessible areas. Nevertheless, our study gives an idea
of the characteristics of landslides in the study area. Fu-
ture studies can integrate both filed based and remote
sensing-based landslide inventory for a detailed analysis.
In the socio-economic survey, this study relied on the
response of the respondents. We did not have any other
source to verify that other than talking to the local polit-
ical leaders and government officials. This study col-
lected the size of landslides and but not the amount of
mass displaced. Future studies can use remote sensing
techniques to measure the displaced mass, and it would
give a better idea about the characteristics of landslides.
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