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Abstract

promising for landslide susceptibility assessment.

Background: Landslide-affecting factors are uncorrelated or non-linearly correlated, limiting the predictive
performance of traditional machine learning methods for landslide susceptibility assessment. Deep learning methods
can take advantage of the high-level representation and reconstruction of information from landslide-affecting factors.
In this paper, a novel deep learning-based algorithm that combine classifiers of both deep learning and machine
learning is proposed for landslide susceptibility assessment. A stacked autoencoder (StAE) and a sparse autoencoder
(SpAE) both consist of an input layer for raw data, hidden layer for feature extraction, and output layer for classification
and prediction. As a study case, Oda City and Gotsu City in Shimane Prefecture, southwestern Japan, were used for
susceptibility assessment and prediction of landslides triggered by extreme rainfall.

Results: The prediction performance was compared by analyzing real landslide and non-landslide data. The prediction
performance of random forest (RF) was evaluated as better than that of a support vector machine (SVM) in traditional
machine learning, so RF was combined with both StAE and SpAE. The results show that the prediction ratio of the
combined classifiers was 93.2% for StAE combined with RF model and 92.5% for SpAE combined with RF model, which
were higher than those of the SVM (87.4%), RF (89.7%), StAE (84.2%), and SpAE (88.2%).

Conclusions: This study provides an example of combined classifiers giving a better predictive ratio than a single
classifier. The asymmetric and unsupervised autoencoder combined with RF can exploit optimal non-linear features
from landslide-affecting factors successfully, outperforms some conventional machine learning methods, and is
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Introduction

Landslide susceptibility assessment is a cogent research
topic intended to determine the spatial probability of land-
slide occurrence since landslides continuously result in
damages and casualties worldwide (Corominas et al. 2013).
Spatial occurrence is called susceptibility, and landslide sus-
ceptibility maps generated from landslide-affecting factors
using statistical approaches subdivide areas into different
terrains that are likely to cause certain types of landslides
(Segoni et al. 2018). Physical methods using GIS and
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remote sensing are more accurate than statistical ap-
proaches (Alexakis et al. 2014; Ciampalini et al. 2015; Di
Martire et al. 2016), while physical methods are not suitable
for large areas (Tien Bui et al. 2016). Therefore, statistical
approaches have received much attention because it is
efficient for fast recognizing landslides in large areas (Chen
et al. 2018b). It is necessary for decision makers to fast
recognize large areas where landslides are expected to re-
sult in land use planning and disaster control. Landslide
susceptibility prediction based on statistical approaches can
achieve this goal efficiently (Borrelli et al. 2018; Huang
et al. 2019). Most of the quantitative methods for produ-
cing landslide susceptibility maps refer to regression or
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classification approaches between real landslide data and
artificially created non-landslide data (Fell et al. 2008). The
quantitative methods most widely used for landslide sus-
ceptibility mapping are such as logistic regression (Lee and
Talib 2005; Ayalew and Yamagishi 2005; Bai et al. 2010;
Aditian et al. 2018), naive Bayes (Tien Bui et al. 2012; Tsan-
garatos and Ilia 2016), artificial neural networks (Pradhan
et al. 2010; Arnone et al. 2016), support vector machines
(Yao et al. 2008; Yilmaz 2010; Ballabio and Sterlacchini
2012; Xu et al. 2012), decision trees (Saito et al. 2009; Yeon
et al. 2010), and random forest (Alessandro et al. 2015;
Trigila et al. 2015; Hong et al. 2016; Chen et al. 2019b; Park
et al. 2019) in machine learning techniques.

Recently, deep learning algorithms have made a series of
revolutions in the field of machine learning (Huang et al.
2019) since the classification capability of a neural network
to fit a decision boundary plane has become significantly
more reliable (LeCun et al. 2015) which can successfully
learn and extract patterns and unique features from big
data (Ayinde et al. 2019). Deep learning also can effectively
avoid local optimization and eliminates the need to set
model parameters because of autonomous processes
(Zhang et al. 2017). At the moment, the core techniques of
deep learning are neural networks that have two or more
hidden layers, including the following techniques: the adap-
tive neuro-fuzzy inference system (Park et al. 2012); recur-
rent neural networks (Chen et al. 2015); deep belief
networks (Huang and Xiang 2018); long short-term mem-
ory (Xiao et al. 2018; Yang et al. 2019); and convolutional
neural networks (Wang et al. 2019). Deep learning-based
autoencoder is a semi-unsupervised learning method with
no prior knowledge, such as landslide inventory, which
means that landslide and non-landslide labels and linear
and non-linear correlation assumptions are not needed
(Huang et al. 2019). For landslide susceptibility assessment,
traditional methods for de-correlation are based on the
prior assumption that there are linear correlations between
landslides and non-landslides. However, landslide-affecting
factors are usually non-linear in practical applications. The
autoencoder driven by data rather than prior knowledge
can transform raw data into non-linear correlated features.

In this paper, novel deep learning algorithms, namely,
both stacked autoencoder and sparse autoencoder com-
bined with traditional machine learning, are proposed for
landslide susceptibility prediction. StAE and SpAE are un-
supervised learning as it does not require external labels
on landslides information. The encoding and decoding
process all happen in the dataset. The input and output
data have the same number of dimensions, and the hidden
layer has fewer dimensions. Autoencoders are learned
automatically from dataset, which is easy to train special-
ized instances of the algorithm that will perform well on a
specific type of landslide-affecting factors. The autoencoder
technique takes advantage of dimension reduction by
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stacked autoencoder and dropout by sparse autoencoder
for non-linear correlations of the landslide-affecting factors
and gives better feature descriptions than the original data.
It does not require any additional methods which are
required for appropriate training data. In summary, this
study proposes the combined method of the advantage of
deep learning and the benefits of machine learning for
landslide susceptibility assessment. The landslides in Oda
City and Gotsu City in Shimane Prefecture, southwestern
Japan, are used as case study. A stacked autoencoder and
sparse autoencoder are combined with random forest ac-
quired from the results of a better predictive performance
between support vector machine and random forest.

Study area

The study area is located in Oda City and Gotsu City,
Shimane Prefecture, southwestern Japan (Fig. 1). The
elevation varies from sea level to 1123 m (Table 1). The
average annual rainfall recorded from the rainfall sta-
tions at Fukumitsu, Oda, and Sakurae are 1657 mm,
1786 mm, and 2011 mm from 2008 to 2018 (Fig. 2). The
cumulative rainfall for 2013 recorded from the rainfall
stations at Fukumitsu, Oda, and Sakurae are 2270 mm,
2102 mm, and 2656 mm, respectively (http://www.jma.
go.jp/jma/index.html). In this study, a total of 90 land-
slides were caused by extreme rainfall from May to
October 2013 (Table 2), and 69 of the landslides were
triggered by extreme rainfall in August 2013. These
landslides can be described as shallow landslides that
were determined based on field investigation.

Spatial data setting

Landslide susceptibility prediction can be evaluated as a
binary classification problem between landslides and non-
landslides. A spatial database setting including landslide
pixel grid, non-landslide pixel grid, and related landslide-
affecting factors is needed for statistical analysis (Huang
et al. 2019). This spatial database was divided into a train-
ing dataset and a validation dataset.

These real 90 of landslides and 90 of non-landslides arti-
ficially generated from ArcGIS software were randomly
split into two parts with a ratio of 70% and 30%. Seventy
percent of the landslide and non-landslide grid cells were
selected for the training model, and the remaining 30%
were used for the validation model. Furthermore, the
landslide (event) and non-landslide (non - event) grid cells
were set to 1 and 0, respectively, and the values of 1 and 0
were used for classification and prediction as the output
variables of the landslide susceptibility prediction models.
Thereafter, the calculated frequency ratio (FR) values were
considered as numeric input variables of landslide suscep-
tibility prediction models.

The landslide-affecting factors in study area are com-
plex, and it is difficult to confirm which affecting factors
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Fig. 1 Study area and landslide inventory of Oda Citiy and Gotsu City in Shimane Prefecture, southwestern Japan (RGB color of
Sentinel-2 satellite)

Table 1 Description and frequency ratio (FR) of topographical and distance to factors in the study area

Factors Values No. of Landslides FR Factors Values No. of Landslides FR
Altitude (m) 0-105.77 59 215 Profile curvature —3755-(=371) 3 0.84
105.78-215.95 21 0.80 —3.72-(-1.18) 6 043
215.96-339.36 10 043 -1.19-103 39 0.90
339.37-550.90 0 0 1.04-3.87 36 1.53
550.91-1123.84 0 0 3.88-43.08 6 1.06
Slope (degree) 0-9.50 2 0.78 Dis. to stream < 101 58 1.64
9.51-19.00 30 1.1 101-200 21 0.73
19.01-28.21 29 1.08 201-300 8 044
28.22-38.00 24 0.92 301-400 3 046
38.01-73.40 5 0.71 > 401 0 0
Plan curvature —49.05 - (—3.81) 2 0.78 Dis. to road < 200 39 291
-382-(-1.11) 12 1.11 201-400 17 1.38
-1.12-057 47 1.08 401-600 7 0.64
0.58-2.60 24 0.92 601-800 5 0.52
261-37.03 5 0.71 > 801 22 0.50




Nam and Wang Geoenvironmental Disasters (2020) 7:6 Page 4 of 16
p
3000 5
W Fukumitsu m Oda m Sakurae
2500
E
£ 2000
8
£
©
= 1500
©
=2
=
| =
< 1000
500
& 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
®mFukumitsu 1419 1843 1618 1733.5 1365.5 2270.5 1446.5 1444 1780.5 1560 1747
m0da 1563 1905.5 1671 1858 1434 2102 1706 1860 1969 1678 1899.5
m Sakurae 1855.5 2023 1882.5 2167.5 1677.5 2656.5 1841.5 1888.5 2107.5 1931 2100.5
700
® Fukumitsu mOda m Sakurae
600
—~ 500
€
E
T 400
£
g
> 300
£
[=
(=]
= 200
11 I 1l
JAN FEB MAR APR MAY JUNE JuLy AUG SEP oct NOV DEC
® Fukumitsu 71 74 80.5 1135 51.5 302.5 349 526 196.5 2435 123 139.5
®0da 88.5 82 96.5 155 64.5 284 272 288.5 182.5 247 165.5 176
® Sakurae 111 97 67.5 161.5 59.5 287 399.5 604.5 209.5 263 151 245.5
Fig. 2 Annual rainfall from 2008 to 2018, and monthly rainfall of 2013 in the study area
.

are the most important and necessary among the topo-
graphic, geological, hydrological, distance to stream and
distance to road. In landslide susceptibility modeling,
landslides may reoccur under conditions similar to those
of past landslides (Westen et al. 2003; Lee and Talib 2005;
Dagdelenler et al. 2016). A total of 14 affecting factors
were acquired and chosen as input variables for landslide
susceptibility models (Figs. 3, 4 and 5).

The topographic factors were acquired and calculated
based on the digital elevation model (DEM), with a spatial
resolution of 10m, including altitude, slope angle, plan
curvature, profile curvature (Yilmaz et al. 2012), distance
to stream (Devkota et al. 2013; Guo et al. 2015), stream
power index (SPI) (Park and Kim 2019), and topographic
wetness index (TWI) (Althuwaynee et al. 2016; Colkesen
et al. 2016). The distance to road (Alexakis et al. 2014; Roy
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Table 2 Description and frequency ratio (FR) of remote sensing - derived index and hydrological factors in the study area

Factors Values No. of Landslides FR Factors Values No. of Landslides FR

NDVI -0.242 - 0.143 15 7.26 SPI —13.816 - (—8.806) 3 0.65
0.144-0.255 19 3.15 —8.805 - (—4.352) 14 0.83
0.256-0.332 30 140 —4.351-0.101 20 0.76
0.333-0.391 26 0.75 0.102-2.773 46 1.28
0.392-0.650 0 0 2.774-14.574 7 1.04

NDWI —-0.324 - 0.046 1 022 TWI —7.969 - (—2.240) 17 0.82
0.047-0.125 22 2.19 -2239-2114 23 0.75
0.126-0.179 36 1.75 2.115-4.520 38 143
0.180-0.223 25 0.79 4.521-8416 12 122
0.224-0.483 6 0.26 8417-21.250 0 0

Bl 0.248-0.312 4 0.86 Rainfall (mm) 1338.5-1424 13 0.54
0.313-0.322 10 045 (from May to Oct. in 2013) 1424.1-1528.5 5 0.36
0.323-0.329 33 0.97 1528.6-1633 2 0.17
0.330-0.339 34 1.50 1633.1-17185 47 1.69
0.340-0436 9 141 1718.6-1823 23 1.82

and Saha 2019) was acquired from Geospatial Information
Authority of Japan (https://fgd.gsi.go.jp/download/menu.
php). Normalized difference vegetation index (NDVI)
(Chen et al. 2019a), normalized difference water index
(NDWT) (Luo et al. 2019), and bare soil index (BI) (Huang
et al. 2019) were derived from the Landsat TM 8 image
data, resampled with a 10 m resolution (Zhu et al. 2018).
The geological factors were derived from the 1:200,000
scale geological map, which was obtained from the Geo-
logical Survey of Japan, AIST (https://www.gsj.jp/en/).
These landslide-affecting factors were reflected using the
raster format with a spatial resolution of 10 x 10 m, which
results in raster format that has the advantages of regular
shape, quick subdivision, and high modeling efficiency
(Huang et al. 2019).

For continuous affecting factors, the Jenks natural break
method was used to divide each continuous affecting
factor into five classes. Then the frequency ratio of all sub-
classes of each landslide affecting factor was calculated as
shown in Tables 1, 2 and 3. The frequency ratio allows
that all 14 landslide-affecting factors have significant influ-
ences on landslide occurrence. Some studies have sug-
gested that the correlations between affecting factors
should be eliminated to reduce model noise for the land-
slide susceptibility assessment (Hong et al. 2017; Lin et al.
2017; Chen et al. 2018a). However, the number of input
variables of the deep learning algorithm is generally hun-
dreds or thousands due to their strong feature extraction
ability, and 14 input variables will not result in informa-
tion redundancy. On the other hand, some collinearity
phenomena between landslide-affecting factors can be tol-
erated by the fast-developed machine learning models
(Huang et al. 2019). These 14 landslide-affecting factors

provide valuable information for producing landslide sus-
ceptibility maps, as quantitative measurement determined
by frequency ratio. Therefore, all 14 landslide-affecting
factors are utilized as input variables in the model to
evaluate their capabilities in performance and feature ex-
traction for the landslide susceptibility assessment.

Methodology

This study was performed using the following main
steps (Fig. 6): (1) correlation analysis between landslide
inventory and landslide-affecting factors using frequency
ratio, (2) landslide susceptibility prediction using SVM
and RF models in machine learning, (3) landslide sus-
ceptibility prediction using StAE and SpAE employing
back propagation neural network in deep learning, (4)
evaluation of StAE and SpAE combined with machine
learning acquired from a better prediction ratio between
SVM and RF, and (5) validation and comparison of pre-
dictive performance from the area under the curves and
landslide susceptibility maps produced by six models.
The landslide samples were created after collecting and
preparing the landslide inventory map, the DEM derived
factors, and remote sensing and geological factors. The
landslide inventory samples were counted and used to
randomly generate non-landslide samples. The final data
combined the landslides and non-landslides samples
with a defined label (1 and 0, respectively) for each sam-
ple. Fourteen landslide-affecting factors were prepared
from a spatial database. The values of the landslide-
affecting factors at each sample location were utilized,
and the derived information was prepared using RStudio.
The dependent variable was converted with one-hot en-
coding. The data were then categorized into subsets: for
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Fig. 3 Thematic maps of topographic factors (a-d) and distance to factors (e and f) considered in this study: a elevation (m), b slope angle
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Fig. 5 Thematic maps of geological factors considered in this study: a geological age and b lithology

training (70%) and validation (30%). The StAE and SpAE
model was trained in an unsupervised manner for feature
extraction, and a set of new features was generated. These
new features were used to train StAE-bpnn and SpAE-
bpnn in deep learning, and anomaly detection based StAE
with RF and SpAE with RF which is selected as better

prediction rate than SVM model. In this study, the valid-
ation of the proposed models was based on a well-known
area under the receiver operating characteristic curve. Par-
ameter tuning was also utilized to assess better accuracy.
Finally, landslide susceptibility maps were generated using
equal interval function in ArcGIS 10.6 software.
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Table 3 Description and frequency ratio (FR) of geological factors

Page 9 of 16

in the study area

Factors Values No.of Ls  FR Factors Values No.of Ls  FR

Geological age  Unknown age 22 131 Lithology  Felsic plutonic rocks 9 093
Triassic to Jurassic 8 041 Gabbro and diorite in accretionary complex 13 1.12
Present 14 3.09 Higher terrace 27 0.85
Permian 13 1.53 Lower terrace 16 0.82
Paleocene to Early Eocene 2 0.36 Mafic plutonic rocks 10 1.50
Middle to Late Miocene 2 137 Marine and non-marine sediments 13 3.94
Middle to Late Miocene 10 9.15 Non-alkaline felsic volcanic intrusive rocks 2 0.64
Middle Eocene 1 0.15 Non-alkaline felsic volcanic rocks 0 0
Late Pleistocene to Holocene 18 141 Non-alkaline mafic volcanic rocks 0 0
Late Pleistocene 0 0 Non-alkaline pyroclastic flow volcanic rocks 0 0
Late Miocene to Holocene 0 0 Sand dune deposits 0 0
Late Eocene to Early Oligocene 0 0 Schist 0 0
Late Cretaceous 0 0 Ultramafic rocks 0 0
Early to Middle Miocene 0 0 Volcanic debris 0 0
Early Pleistocene 0 0 Water 0 0
Early Miocene to Middle Miocene 0 0 0 0

Frequency ratio (FR)

The number of landslide pixel grids in each class is eval-
uated, and the frequency ratio for each factor class is
assigned by dividing the landslide ratio by the area ratio.
The frequency ratio shows the correlation between land-
slides and affecting factors in a specific area. If this ratio
is greater than 1, then the relationship between a land-
slide and the affecting factor’s class will be strong but if

the ratio is less than 1, then the relationship will be
weak. If the value is 1, it means an average correlation
(Meten et al. 2015).

Support vector machine (SVM)

Two main principles of SVM are the optimal classification
hyperplane and the use of kernel features. The purpose of
optimal sorting hyperplanes is to accurately distinguish

-
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the two types of samples between landslides and non-
landslides while maximizing the sorting margin. Deter-
mining kernel function and optimal parameters are critical
for evaluating landslide susceptibility using SVM. Polyno-
mial kernels and radial basis function are the most com-
monly used kernels in the literature (Huang and Zhao
2018). To optimize two parameters, both penalty coeffi-
cient C and kernel function parameters are needed in the
SVM model.

Random forest (RF)

The random forest, a classification tree algorithm with
repeated dichotomy data, can significantly reduce the
computations required for classification and regression.
In RF algorithms, predictive models are established by
utilizing many decision trees. Based on randomly se-
lected variables and samples, these trees and their deci-
sions are generated. Once the model is established, the
samples are first sorted individually according to all de-
cision trees in the model, and then by all trees (Huang
and Zhao 2018). The proportion of decision tree esti-
mates and generates landslide susceptibility indexes,
which can predict landslide occurrence between all deci-
sion trees in the RF model (Goetz et al. 2015).

Stacked autoencoder (StAE)

The StAE is an artificial neural network, which is a spe-
cial type of multi-layer perceptron. It is a type of un-
supervised learning algorithm with an asymmetric
structure, in which the middle layer represents the en-
coding of the input data in the bottleneck layer (Yu and
Principe 2019). The bottleneck constrains the amount of
information that can traverse the full network, forcing
the learned compression of the input data. The StAE is
trained to reconstruct the input of landslide-affecting
factors onto the output layer for feature representation,
which prevents the simple copying of the data and the
network. The middle layer has a lower dimension to
avoid overfitting, which can either select a subset of fea-
tures with the highest importance or apply some dimen-
sion reduction techniques (Hinton and Salakhutdinov
2006; Charte et al. 2018). In this study, the StAE com-
bined with back propagation neural network was proc-
essed for a lower dimension of features than the input
data have, which can be used for learning the most im-
portant features of the data.

Sparse autoencoder (SpAE)

The SpAE consists of an input layer, hidden layers, and an
output layer. Each layer in this neural network contains a
sufficient number of neurons. Dropout can randomly clas-
sify the weight of some implicit layer nodes and reduce
the mutual dependence between nodes to realize the
normalization of neural networks. Additionally, dropout
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can effectively prevent overfitting and gradient disappear-
ance (Huang et al. 2019). To initially achieve de-
correlation among the 14 landslide-affecting factors, drop-
out was added to the input layer.

The process of StAE is as follows. First, some of the
neurons in the network are randomly dropped in the
mini-batch training samples and the remaining neurons
are fed to the next layer. After obtaining this mini-batch
training sample, the deleted neurons are recovered and
some neurons in the network are randomly deleted once
again. The corresponding parameters are updated based
on the stochastic gradient descent method, performed
on the neurons that have not been removed.

Results

Landslide susceptibility modelling using the six models
All models based on the deep learning and machine
learning were coded in R language on RStudio. For the
SVM model and RF model, parameters were determined
using a 10-fold cross-validation approach. With radial
basis function, SVM model was acquired from grid
search for SVM parameter tuning. For RF model, it was
composed of ‘mtry” and ‘tree’, which were 3 and 300, re-
spectively. The autoencoder models based on the deep
neural network were coded in R language on RStudio
using H20 packages. These algorithms were performed
using hyperbolic tangent function (i.e., the tanh func-
tion) in every hidden layer which was used to encode
and decode the input to the output in the undercom-
plete autoencoder. In the H2O library, five hidden layers
with encoders and decoders were designed by using the
tanh activation function in each layer. Stacked autoenco-
ders (StAE) were constructed by organizing autoencoder
on top of each other also known as deep autoencoder.
StAE consists of multiple autoencoder stacked into mul-
tiple layers where the output of each layer was wired to
the inputs of the successive layers, as seen in Fig. 7,
which was composed of 80-50-2-50-80. To obtain good
parameters, StAE employed greedy layer-wise training.
The benefit of StAE was that it can evaluate the benefits
of deep network, which has greater expressive power.
Furthermore, it usually can capture useful hierarchical
grouping of the input. Finally, model construction was
determined by the majority vote among all trees using
RF models. The aim of sparse autoencoder (SpAE) was
to make a large number of neurons to have low average
output so that neurons may be inactive most of the time.
The limitation of autoencoders to have only small num-
bers of hidden units can be overcome by adding a spars-
ity constraint, where a large number of hidden units can
be utilized usually more than one input. Three hidden
layers with encoders and decoders were designed by
using the tanh activation function in each layer in the
H2O library. Sparsity can be achieved by introducing a
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loss function during training or manually zeroing few
strongest hidden unit activations, which was composed
of 200-200-200 (Fig. 8). For classification, model class
was constructed by RF model by means of the majority
vote among all trees. Reconstruction error value employ-
ing mean square error was used by means of anomaly
detection in both StAE and SpAE, which were 0.068 and
0.088, respectively.

Landslide susceptibility maps produced by the six models
The landslide susceptibility maps were derived from
SVM, REF, StAE, SpAE, StAE with RF, and SpAE with RF
in the ArcGIS 10.6 software (Fig. 9). For better
visualization and comparison, the indices were reclassi-
fied into five classes using the equal interval function:
very low (0-0.2), low (0.2-0.4), moderate (0.4—0.6), high
(0.6—0.8), and very high (0.8—1). The susceptibility class
area of the StAE model as the best performance (Table 4)
were 6.31%, 13.58%, 33.04%, 36.81%, and 10.26%, re-
spectively. The susceptibility class area of the RF model
(Fig. 9b) and StAE model (Fig. 9¢c) has very high value.
The susceptibility index value of the SVM model (Fig.
9a) and StAE models (Fig. 9c) were prominent near the
road (Fig. 3f). SpAE and SpAE with RF have lower values
of class area percentage for a very high (0.8—1.0) index
of the susceptibility map. RF and StAE have lower values
of class area percentage for a moderate (0.4—0.6) index
of the susceptibility map. StAE with RF and SpAE with
RF have lower values of class area percentage for a very

low (0.0-0.2) index of the susceptibility map (Fig. 94, e, f
and Table 4).

Discussion

Validation of prediction performance

The landslide susceptibility assessment was verified
using the area under the curve on the validation dataset
for six models. The predictive ratio for landslide suscep-
tibility assessment is mainly calculated by confusion
matrix. The true positive rate (TPR) is defined as the ra-
tio of true positive to the sum of true positive and false
negative, and the false positive rate (FPR) is defined as
the ratio of false positive to the sum of false positive and
true negative to the number of validation samples
(Zhang and Wang 2019). In general, the true positive de-
fines the landslide grid cells that are predictive as land-
slides, true negative means non-landslide grid cells that
are predictive as non-landslides, false-positive reflects
non-landslide grid cells that are predictive as landslides,
and false negative means landslide grid cells that are pre-
dictive as non-landslides (Huang et al. 2019). The area
under the curve was applied to assess the prediction per-
formance of landslide susceptibility index values on the
validation dataset. The prediction rate values of SVM,
REF, StAE, SpAE, StAE with RF and SpAE with RF model
are obtained by calculating the area under the prediction
rate curves. The StAE with RF and SpAE model of com-
bined classifier have relatively higher prediction rates
than using SVM, RF, StAE, and SpAE model of single
classifier (Fig. 10). This means that the classifiers
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combined with both autoencoder and traditional ma-
chine learning are better than using a single classifier.
Autoencoder is unsupervised learning as it does not
require external labels on landslide information. The
encoding and decoding process all happen within the
dataset. The input and output data have the same
number of dimensions, and the hidden layer has
fewer dimensions. Thus, it contains compressed infor-
mation of the input layer, which is why it acts as a
dimension reduction for the original input layer. From
the hidden layer, the neural network is able to decode
the information to its original dimensions. Autoenco-
ders are learned automatically from data examples,
which is a useful property. It means that it is easy to
train specialized instances of the algorithm that will
perform well on a specific type of input. It does not
require any additional methods which are required for
appropriate training data.

Sample size

One of the challenges for landslide susceptibility map-
ping is to suggest the sample size on the number of
landslide inventories. Several articles have been reported
to address adequate numbers of landslide inventories
needed to make acceptable landslide susceptibility map-
ping where sample size varies from 0 to several thousand
in different scales of study areas. The sample size affects

the result of the statistical analysis, as an increase in
sample size, the result would be more acceptable. Ac-
cording to Demoulin and Chung (2007), in spite of the
limited sample size using ten landslides in about 15 x
15 km scale, Bayesian method in machine learning deliv-
ered satisfying prediction rates. Heckmann et al. (2014)
state that small samples result in large standard errors
and wide confidence intervals for the population param-
eters. In the case of regression parameters, small samples
cause the estimation to be uncertain, and there is a
higher risk of coefficients being insignificant when the
respective confidence interval includes zero. With re-
spect to replicate sampling and model selection, it is ex-
pected that the diversity of models. However, increasing
sample sizes causes standard errors and confidence in-
tervals in parameter estimation to decrease. In a
significance-based stepwise model selection, very large
samples are expected to facilitate the inclusion of more
and more variables. Reichenbach et al. (2018) present
that some articles did not use any landslide inventory,
which are based on the relative importance of the the-
matic maps as landslide-affecting factors (Adler and
Huffman 2007). In this study, all models obtained from
84% to 93% prediction rate using 90 landslides (about
20km square), which is similar to previous study
(Sabokbar et al. 2014) of different study area where 82
landslides were used (about 24 km square).
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Table 4 Number of landslides occurred and percentage of landslide susceptibility class area

Landslide SVM RF StAE SPAE StAE with RF SPAE with RF
susceptibility No. % No. % No. % No. % No. % No. %
class(index value)

Very low (0-0.2) 15 17.00 1 11.80 5 35.65 7 30.16 2 6.31 3 582
Low (0.2-04) 4 1961 2 1045 1 11.09 10 19.07 6 13.58 8 14.38
Moderate (0.4-0.6) 7 2583 4 843 3 10.52 15 24.73 16 33.04 13 35.96
High (0.6-0.8) 17 24.94 13 3343 4 13.07 44 22.60 66 36.81 66 33.25
Very high (0.8-1.0) 47 12.62 70 35.89 77 29.67 14 344 0 10.26 0 10.59
Sum 90 100 90 100 90 100 90 100 90 100 90 100

Study limitation

In this study, all landslide points were obtained through
GPS by field investigation from May to October in 2013
without the aid of satellite imagery or unnamed aerial ve-
hicle (UAV). As seen in Fig. 2f, most landslide points were
in the vicinity of human activity near the roads in the
mountains, not inside the mountainous area. The landslide
inventory near the roads may affect landslide susceptibility
maps (Fig. 9), which results in landslide susceptibility index
value near the roads higher than in other areas.

Landslide susceptibility mapping is based on the prob-
ability of reoccurrence at the area where landslides already
occurred, unlike mapping physically based on modeling,
which relies on as follows: 1) the number of abundant
landslide inventories for statistical analysis, 2) sampling

strategy to construct non-landslide for regression and
classification, 3) scale of study area, 4) resolution of DEM,
5) relatively equal scatter distribution of landslide inven-
tory in study area 6) setting boundary of study area to
construct landslide-affecting factors, 7) reasonable selec-
tion of landslide-affecting factors. To construct distinct
landslide inventory with distinguishing landslide triggering
factors between rainfall and earthquake is considered the
most important key step than using any advanced classi-
fier for landslide susceptibility mapping.

Conclusion

In this study, the classifiers combined with both deep
learning and traditional machine learning, StAE with RF
and SpAE with RF models, are proposed for landslide
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susceptibility prediction. The autoencoder consists of in-
put layers for raw data, hidden layers for feature extrac-
tion, and output layers for landslide susceptibility
prediction. The combined classifiers have the advantage
of both machine learning and deep learning, i.e., dimen-
sion reduction of the StAE model and dropout of the
SpAE model for feature extraction.

The six models were applied in Oda City and Gotsu
City, Shimane Prefecture, southwestern Japan. The cor-
relation between landslides and landslide-affecting fac-
tors using frequency ratio was high in NDVI, distance to
road, and altitude. Performance assessment was carried
out with the SVM, RF, StAE, SpAE, StAE with RF, and
SpAE with RF models. The results show that the pro-
posed StAE with RF and SpAE with RF models have a
relatively better prediction rate than a single classifier
such as SVM, RF, StAE and SpAE models. In conclusion,
the proposed combined classifier is promising for classi-
fication between landslide and non-landslide following
landslide susceptibility prediction because it can over-
come the limitations of conventional machine learning
algorithms, extract features and pattern recognition, re-
duce computations, and improve performance.
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