
RESEARCH Open Access

Landslide Susceptibility Mapping of Urban
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Abstract

Although the Andean region is one of the most landslide-susceptible areas in the world, limited attention has been
devoted to the topic in this context in terms of research, risk reduction practice, and urban policy. Based on the
collection of landslides data of the Andean city of Quito, Ecuador, this article aims to explore the predictive power
of a binary logistic regression model (LOGIT) to test secondary data and an official multicriteria evaluation model for
landslide susceptibility in this urban area. Cell size resampling scenarios were explored as a parameter, as the
inclusion of new “urban” factors. Furthermore, two types of sensitivity analysis (SA), univariate and Monte Carlo
methods, were applied to improve the calibration of the LOGIT model. A Kolmogorov–Smirnov (K-S) test was
included to measure the classification power of the models. Charts of the three SA methods helped to visualize the
sensitivity of factors in the models. The Area Under the Curve (AUC) was a common metric for validation in this
research. Among the ten factors included in the model to help explain landslide susceptibility in the context of
Quito, results showed that population and street/road density, as novel “urban factors”, have relevant predicting
power for landslide susceptibility in urban areas when adopting data standardization based on weights assigned by
experts. The LOGIT was validated with an AUC of 0.79. Sensitivity analyses suggested that calibrations of the best-
performance reference model would improve its AUC by up to 0.53%. Further experimentation regarding other
methods of data pre-processing and a finer level of disaggregation of input data are suggested. In terms of policy
design, the LOGIT model coefficient values suggest the need for a deep analysis of the impacts of urban features,
such as population, road density, building footprint, and floor area, at a household scale, on the generation of
landslide susceptibility in Andean cities such as Quito. This would help improve the zoning for landslide risk
reduction, considering the safety, social and economic impacts that this practice may produce.

Keywords: Landslide susceptibility, Quito, LOGIT, Sensitivity analysis, Kolmogorov-Smirnov test, Andean cities, Urban
factors
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Introduction
Urban landslides in the Andes
The Andes is a sub-region located in western South
America near the Pacific Ocean, named after the pres-
ence of the Andean mountains. The Andean mountain
range is among the cordilleras with the highest eleva-
tions in the world and part of the Pacific Ring of Fire, a
global mountain system characterized by frequent vol-
canic eruptions and earthquakes (Blanchard-Boehm
2004). The range crosses the territories of Colombia,
Ecuador, Perú, Bolivia, Chile, and—with less significance
for human settlements—Argentina and Venezuela. The
Andes orography is of particular concern in terms of
sustainable urban development because it has been sub-
ject to significant urbanization processes in recent de-
cades, at an average of 20 m2 per minute, particularly
informal and diverse in typologies (Inostroza 2017). This
growth includes metropolises such as Bogotá, Santiago,
and Lima. Other medium-size cities, such as Medellin,
Quito, and Cali, and smaller cities, also must be consid-
ered in terms of urban population growth. This
urbanization has been induced by country–city migra-
tion and natural growth, for which housing and urban
development—mostly informal and contributing to
urban poverty—is a challenge to planning and manage-
ment at all governmental levels, which have had to shift
their policy paradigm (Blanchard-Boehm 2004; van
Lindert 2016). Furthermore, cities are subject to urban
risk in the Andes, where one of the most frequent risks,
with high accumulated impact, is landslides.
Susceptibility analysis of landslide risk (LRisk) has

been broadly studied in case studies at regional scales
and mostly covering rural areas, often involving natural
conditions and, to a lesser extent, considering anthropic
factors, such as road networks and urban areas. How-
ever, urbanization is often treated only as a generic land-
use category, without further detail. Against this back-
ground, LRisk is one of the main concerns for urban de-
velopment in the Andes in light of physical and social
factors. The geodynamics of this region make it prone to
landslides. This condition is aggravated by climate change,
in addition to the extreme events produced by El Niño
climatic phenomena, which affect diverse locations of the
region with an irregular time cycle. In some of these areas,
urbanization has expanded rapidly in recent decades, as
mentioned above. Cities in the Andes account for 70% of
the population and the share of the urban population
continues to grow rapidly. Unplanned urbanization is
developing without any consideration of LRisks and
governmental bodies have limited capacities to man-
age urban development (Comunidad Andina 2017;
D’Ercole et al. 2009; UNISDR 2018). Evidence regard-
ing landslide-prone conditions in the region has been
presented by Kirschbaum and Stanley (2018) and

Sepúlveda and Petley (2015). These studies portray
the concentration of landslide-susceptible areas in the
irregular orography of Colombia, Ecuador, and Peru,
with hundreds of fatalities. By comparison, fewer fa-
talities have occurred in neighboring countries in
South America, with the exception of Brazil. Accord-
ingly, disaster risk management (DRM) should be bet-
ter integrated with land-use planning (LUP) for
appropriate diagnostics and effective reduction of
risks related to landslides.

Theoretical background
Key definitions
A landslide is defined as: “the downslope movement of
soil, rock, and organic materials under the effects of
gravity” (Highland and Bobrowsky 2008, p. 4). Its types
include slides, falls, topples, flows, and lateral spreads,
and combinations of these, whose causes can be geo-
logical, morphological, or anthropic (shaping of built or
natural landscapes), which can be triggered by water,
seismic, and volcanic activities (GEMMA 2007; USGS
2004). In complement, landslide disaster risk is the com-
bination of natural hazard conditions, such as weak soil,
intense precipitation, and earthquakes; vulnerability,
such as soil cuts and fills, or structural weakness; and,
exposure, such as construction on LRisk-prone areas, as
illustrated by Puente-Sotomayor et al. (2021).
This understanding of LRisk is directly related to land-

slide susceptibility, which beyond the definition of disas-
ter risk as a social product, aims to identify the
interaction between natural and built components,
which is susceptible to landslides. By comparison, vul-
nerability—due to a closer relationship to anthropic ac-
tion on land—can lead to analysis at minor scales.
Anthropic vulnerability factors have less been taken into
account in landslide susceptibility mapping (LSM); such
in the case of road networks, specific urban land uses,
and other human settlement features. The latter is a par-
ticular focus of attention for this study because extensive
landslide disasters are produced in cities. However, few
case studies address LSM in urban areas, such as re-
ported by Bathrellos et al. (2009); Dragićević et al.
(2014); Klimeš and Rios Escobar (2010); Lara et al.
(2018); or, Lee, Baek, Jung, & Lee et al. (2020). Further-
more, of these, few consider vulnerability-related factors
at a fine level, such as population, urban street networks,
and urban structures (buildings), as noted in Table 1.
Reichenbach et al. (2018) define landslide susceptibility

as the probability of incidence in a determined terrain
relying on specific factors, including climate. These au-
thors distinguish susceptibility from threat/hazard or
vulnerability analyses in that the former is analyzed at a
large scale and the data is acquired and processed at an
aggregate level. Reichenbach et al. (2018) conclude from
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a global review of LSM that the usual determinant fac-
tors are slope, geology, and aspect; of these, the first two
have a higher influence on the prediction power of
models. They also state that results may vary according
to methodologies, model validation, landslide types, trig-
gering factors, and the researcher background. Other
studies include precipitation, population density, and
land use as significant factors (Hemasinghe et al. 2018;
Sepúlveda and Petley 2015).

A brief review on LSM
Reichenbach et al. (2018) classify landslide susceptibility
assessment into five groups, namely: (i) geomorpho-
logical mapping; (ii) analysis of landslide inventories; (iii)
heuristic or index-based approaches; (iv) process-based
methods; and (v) statistical modelling methods. The
present work combines the heuristic approach officially
adopted by the municipality of Quito as a preliminary
input.

Modelling approaches A number of machine learning
modelling techniques have been developed and ap-
plied in diverse locations globally to achieve the finest
possible precision—each time with more sophistica-
tion—to provide better inputs into landslide risk re-
duction (LRR) policy and planning. Among the most
used LSM techniques during the past two decades are
multi-criteria evaluation (MCE), analytical hierarchical
process (AHP), weighted linear combination (WLC),
logistic regression (LR), data-driven frequency ratio
(FR), random forest (RF), support vector machines
(SVM), and artificial neural networks (ANN) (see
Table 1). Most of the applied techniques have been
proven to provide accurate results and differentiated
advantages, sufficient for LSM practices and, there-
fore, LRR zoning policies. For instance, a comparison
between LR, SVM, and RF applied to the Sihjhong
watershed, Taiwan, found that RF performed best,
whereas LR ran faster (Chang et al. 2019), which can
be useful for large datasets, as in the present work.
Regardless of the adopted method, research on LSM
for Andean cities and regions is generally very limited
and only a few application cases have been recently
published (Puente-Sotomayor et al. 2021).
Modelling for LSM has prompted a discussion on the

impact that different parameters of the process have on
the accuracy of the produced results. In addition to the
modelling technique used, these parameters include data
preprocessing, scale or cell/pixel size of input factors,
and the type and number of factors used for the model-
ling. Table 1 shows a brief comparison of the described
parameters among previous studies.

Relevant LSM parameters Among the most relevant
parameters is the preprocessing of data. There are differ-
ent techniques to make factors comparable. These in-
clude different methods of normalization or
standardization. Terminology varies. This study adopted
the source assignation of weights in a discrete scale, also
called weight-encoding, and data discretization using a
percentile scale. Although standardization of weighted
data for landslide susceptibility mapping is still an open
discussion (Ronchetti et al. 2013), it is considered a valid
option whenever intervals between ordinal categories are
considered equal, regardless of statistical limitations
such as the limited number of categories and overesti-
mation of statistical power (Norman 2010; Pasta 2009;
Williams 2019).
Regarding the factor parameters for an urban LSM, it

must be noted that only five of the twenty reviewed
studies relate to urban areas. However, even in these
cases, the factors are similar to those applied in the
other works, often covering regional scales and rarely in-
volving cities, which the current work aims to analyze.
Therefore, few previous studies include human/urban
related factors, such as the buildings (see factors column
in Table 1), population, and urban road networks, as ap-
plied to this work. It is relevant to note that, unless an
specific factor approach or restraints on the availability
of data are stated, the most considered factors are topog-
raphy/digital terrain model (DTM) derivatives (primarily
slope angle, aspect, elevation, and curvature), annual
precipitation, geology (primarily lithology and land use/
vegetation coverage), distance to roads, hydrology (pri-
marily distance to drainage, density, and topographic
wetness index (TWI), which also relates to topography)
and distance to faults in the seismicity. Furthermore, be-
yond the possibility of including a large number of fac-
tors, this does not necessarily mean better performance
of a model and the optimal number of factors in a LSM
is still debatable (Catani, Lagomarsino, Segoni, & Tofani
2013a).
Another discussed parameter in the literature is the

resolution at which the input data is set. Table 1 also in-
cludes this parameter for each revised work. Resolutions
vary from 1 to 500m cell sizes. Regardless of the re-
straints based on the availability, reliability of data, and
the context itself, some studies have tested the sensitivity
of this parameter with diverse approaches and results.
For instance, Chang et al. (2019) concluded that the fin-
est resolution of topographic data does not necessarily
result in the best performance of a model. Regarding
DTM derivatives, Pawluszek et al. (2018) found in an ex-
ample case that the optimal resolution was 30 m, classi-
fied by SVM. Another case proved that the 50m
resolution contributed best to the performance of an RF
technique (Catani et al. 2013b). Additional points of
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view state that different land-surface factors also have
different optimal scales, and that the applied modelling
technique may also influence this parameterization.
Therefore, multiscale approaches are recommended for
better performance in complex terrain settings (Catani
et al. 2013a Sîrbu et al. 2019). This has also been corrob-
orated by Dragićević et al. (2014), who examined these
types of complex and multi-scalar contexts from re-
gional to municipal and local scales.
Once the data is pre-processed and made available for

modelling, one common and simple theoretical model
used is multi-criteria evaluation (MCE), which can be
combined with sensitivity analysis, such as in Feizizadeh
and Blaschke (2014) and Orán Cáceres et al. (2010), and
explained below. A complementary approach to MCE is
binary logistic regression (LOGIT), which is among the
most used statistical methods for landslide susceptibility
mapping (Reichenbach et al. 2018). This type of model
helps to test weighted models, which do not support the
assessment of the probability of landslide occurrences
(Lombardo and Mai 2018). For this research, a LOGIT
was applied, followed by an SA.

Sensitivity analysis
A further step in evaluating LOGIT models is to apply an
SA (Reichenbach et al. 2018). SA is applied to determine
the contribution of input parameters to the accuracy of the
model prediction appraised in its outputs (Shahri et al.
2019; Poelmans and Van Rompaey 2010). The objective of
sensitivity analysis is to help adjust the calibration of the
studied parameters involved in the LSM model to improve
its predicting/classification power. Among different meth-
odologies, two stand out: the simple, univariate, or “one-at-
a-time” (OAT) method, and the stochastic/random-selec-
tion method, also called “Monte Carlo”, whose applications
vary according to the needs of the field of practice (Bouyer
2009). Details of both methods are explained in the
methods and results sections.

Methods
Study area and its landslide risk-reduction policy
background
Quito, the capital of Ecuador, is the most populated of
two existing metropolitan districts (regions) in the coun-
try, with 2,781,641 inhabitants projected for 2020 (INEC
2016). The jurisdiction of the Metropolitan District of
Quito (DMQ) covers 4235.2 km2, of which 10% is urban
land with 286,412 housing units (Quito Municipio del
Distrito Metropolitano 2015). As one of the Andean
mountain cities, Quito has suffered from multiple nat-
ural threats, including landslides, volcano eruptions,
floods, and earthquakes. Hence, exposure to risks has
been further exacerbated, given the fast population
growth and the uncontrolled urbanization process.

Accordingly, Quito has collected geodata relating to
landslide disaster events during the past two decades.
This has strengthened the city’s management capacities
and its approach to preventive policies and actions
(Rebotier 2016), in addition to preparedness and re-
sponse. Most recently, resiliency has been adopted as an
urban policy, to the point of being institutionalized, with
the creation of a Resiliency Department and the design
of the city’s resiliency strategy (Quito Alcaldia del Dis-
trito Metropolitano 2018; Quito Municipio del Distrito
Metropolitano2017).
Landslide risk reduction (LRR) policies in Quito have a

history of approximately one decade. They began with
landslide-related land-use zoning as part of the local plan,
in 2011 (Puente-Sotomayor et al. 2018). Previously, build-
ing regulations included generic risk prevention measures,
such as setbacks from ravines, slope borders, and rivers
(Concejo del Distrito Metropolitano de Quito 2003). For
lahar-prone areas, a transfer of responsibility from govern-
ment to users was used, applying a notarized responsibility
to the owner for building on high-risk areas, prior to city
approval (Concejo del Distrito Metropolitano de Quito
2011). Since 2014, this has no longer been allowed in na-
tional laws, which assign criminal liability of the generated
risks to any official that approves subdivisions or projects
in risk zones (Ecuador Asamblea Nacional 2014).
During the past decade, the landslide preventive/re-

ductive approach was materialized by establishing the
LRisk zone (ZR) category in the local LUP. Construction
was strictly banned in ZR areas. This zoning policy intui-
tively and imprecisely combined slopes (at the 1:5000
scale), soil stability (at the 1:25,000 scale), and field in-
spections as the only inputs in 2011. The application of
this regulation triggered around 40 complaints per year
from users, who claimed they were affected socially,
through the violation of their housing rights; and, eco-
nomically, due to previous investments and rent expec-
tations related to the property labeled at-risk. In 2013, a
reform to this ordinance relaxed the policy by returning
to owners the right to build on ZRs, who provided geo-
technical studies that justified their projects. This re-
vealed limitations of the technical capacity of users and
officials, and the problem with defining “mitigation”,
which subsequently evidenced the poor accessibility to
geotechnical risk relief for low socio-economic strata. A
new reform in 2015 cancelled the ZR land-use category
and converted it to an overlay map, which, in practice,
did not change the policy (Puente-Sotomayor et al.
2018). By 2015, the first landslide susceptibility studies
were produced. The outputs of these studies were ex-
pected to improve the ZR policy. However, they have
not yet been articulated with the LUP. These studies’
outputs have been labeled as official data and were used
as part of the input data for this research.
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A brief comparison between the ZR layer, for which
the limits have not yet changed, the existing landslide
susceptibility study (FUNEPSA et al. 2015), and a
landslide events database from 2005 to 2017 (see
Fig. 1), provided by the Metropolitan Emergency Op-
erations Committee of Quito (COE-M), reveals incon-
sistencies between the policy, research, and facts.

Only 8% of recorded landslide events are contained in
ZR polygons, 25% of ZR do not match with the high
and very-high susceptibility areas, and 81% of high
and very-high susceptibility areas are not covered by
the ZR polygons. This presumably means that vast
areas should be considered as landslide-prone, while
other areas, although smaller in proportion, probably

Fig. 1 Study Area in the Metropolitan District of Quito, displaying the 2005–2017 period landslide events. Data Source: MDMQ, IGM Ecuador.
Legend: Study Area (red line), Urban Class (gray polygon), Landslide Events during the 2005–2017 period (yellow dots), Arterial Streets network
(black continuous lines) and the Metropolitan District of Quito jurisdictional limit (dashed blue line)
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do not need a protection policy (Puente-Sotomayor
et al. 2018).

Purpose, objectives and scope
The main purpose of this study was to produce a reliable
Landslide Susceptibility Map (LSM) that can support
LRR policies for urban Quito (see study area section).
This represents a progress from previous actions regard-
ing landslide preventive/reductive zoning in this city. For
this purpose, specific objectives included the examin-
ation of the incidence of urban-related factors in LRisk
susceptibility; providing quality inputs for better ZR de-
limitation, considering the implications for safety, hous-
ing rights, and the economy; and generating
improvements, further discussion and action in the local
LSM processes, by exploring different parameters such
as modelling approaches, scale, data generation, and
factors selection.
The practical scope of this study was to derive a land-

slide susceptibility map based on a binary logistic regres-
sion model combined with a sensitivity analysis (SA) to
provide optimal calibration options for factor coefficients
used in the model. Developing an evidence-based LSM
that considers SA is an indispensable input for develop-
ing an urban policy backed by a socio-political consen-
sus (Orán Cáceres et al. 2010). The context of
application will be the urban core of the DMQ, includ-
ing its surrounding peri-urbanized areas, as described
below.
This research is built upon data collected during a

LRisk analysis produced by the municipality in 2015.
This study delivered a weighted multi-criteria theoretical
model including six factors that were surveyed and proc-
essed. These factors are slope, intense precipitations, soil
stability after former large landslides, lithology, land use/
vegetation coverage, and seismic intensity. Each factor
had partial weights/susceptibilities proposed by local ex-
perts in the fields of geotechnics, meteorology, geog-
raphy, disaster management, and seismology. The results
of this model portrayed a landslide susceptibility map
for Quito and its satellite “conurbated” areas (an ap-
proximate total area of 610 km2) using the map algebra
GIS tool to sum the partial weights as shown in Fig. 2
(FUNEPSA et al. 2015).

Inputs and preprocessing
Initially, our study proposed to develop a binary logistic
regression model on the basis of six factors identified by
the municipality experts, plus other related to the
Quito urban settings, which we aimed to experiment
with. A dataset of landslide events that occurred from
2005 to 2017 was therefore collected from the COE-
M of Quito. This database includes around 1400
events, including rotational and translational

landslides, flows, and topples, all considered generic-
ally as landslides (USGS 2004). A minor limitation is
that the dataset suffers from some underreporting,
and unbalanced and unstructured elements.
From the data of the six initial factors, the first LOGIT

was applied. Then, four additional factors were included
in two steps to test the model. As a first addition, popu-
lation, provided by the National Institute of Statistics
and Census (INEC), and floor area, provided by the
Quito municipality (MDMQ), were included to con-
struct a second LOGIT. Then, road density and building
footprint area, also provided by the MDMQ, were added
to run the final LOGIT. All four additional factors were
pre-processed and adapted for this research work. As ex-
plained in the introduction section, considering the
urban context of Quito, where all of the landslide events
were registered, this research aimed to determine the in-
cidence of these factors on the results, whose content
was more relevant to the urban context, i.e., buildings,
streets, and population. Details of all of the ten factors
included in this study are provided in Table 2.

Resolution
The dependent factor, landslide events (binary), and the
ten independent, explanatory factors were pre-processed
in raster files, with a cell size (disaggregation level) of 50
m. This was the resolution at which the lithology, land
coverage, seismicity, precipitations, soil stability, and
slope were previously provided by the municipality sur-
veyors. Complementarily, the additional four “urban”
factors were converted from a scale at which the detail
of buildings, blocks, and streets was legible (1:1000 ap-
proximately), which was logically consistent with the 50
m cell size of the other six factors. Therefore, all of the
datasets were standardized to this resolution. In this re-
gard, the theoretical background review implied that, al-
though scale may determine the modelling performance,
performance is also dependent on the context and com-
plexity of the process. For this study, although the sec-
ondary source input data was pre-processed at a 50 m
cell size, an aggregation process through resampling GIS
techniques (nearest neighbor mode) were applied to suit
the complete datasets at resolutions of 100, 200, and
500 m before the application of the LR modelling for
each resolution. Subsequently, the results provide a ra-
tionale to retain the original scale.

Standardization
To manage a standard scale of factor values before ap-
plying the LOGIT, the following process was under-
taken. The binary layer of landslide events records one
of two categories for each area unit or cell: true (or one),
when one or more landslide events occurred in it; or,
false (or zero), when no landslides occurred in it. Two
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standardization types proceeded. The first six factors
provided by the municipality were previously converted
from either classified continuous data or categorical data
to weights in a discrete 1-to-4 scale. The additional four
factors, all continuous, were classified using natural
breaks in four classes, to correspond to the 1-to-4 scale.
The details of this conversion are shown in Table 3. The
complementary data, i.e., the additional four factors that

were collected in vector format, were then converted
into raster TIFFs to fit with the remainder of the dataset
(initial six factors).
By looking at the data categories and their assigned

weights, the contribution from the local experts in gen-
erating the datasets is notable. This can be seen, in par-
ticular, for factors such as lithology, land-use/vegetation
coverage, and stability, whose information is specifically

Fig. 2 Landslide susceptibility map for Quito including 2005–2017 event spots. Data Source: Quito Municipality MDMQ. Legend: Study Area (red
line), Landslide Events during the 2005–2017 period (black dots), Arterial Streets network (grey continuous lines), the Metropolitan District of
Quito jurisdictional limit (dashed blue line) and eight to 21 landslide susceptibility levels (blue-yellow-red color spectrum)
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related to the Quito context. Furthermore, It is import-
ant to mention that, for the case of the slope factor, the
class “greater than 50°” is weighted as 3 and not 4, as
one would suppose. This is due to the fact that most of
the local geology type, the “cangahua”, found at this
slope range and in most of the study area, is less suscep-
tible to landslides than flatter slope ranges and has re-
ported much less events, according to the local data
mining experts. Regarding the rainfall, the meteorology
surveyors stated that the Quito region is not affected by
long-term persistent rainfall, which triggers landslides in
other parts of the world, such as Central America or
Southeast Asia, or in territories affected by El Niño phe-
nomena extreme events, which are not regular in terms
of time cycles and occur every 25 or 30 years. Instead, in
Quito, landslides are more likely triggered by intense
precipitations, which is why this variable was included
instead of other climate-related factors, such as annual
precipitation rates. Inclusive, long precipitation was not
considered in the reviewed scientific articles, as shown
in Table 1.
A second standardization process for the ten explana-

tory factors was applied and tested. It was based on a
percentile discretization. The aim of applying percentile
discretization was to have a finer value than the 1-to-4
scale. This also helped to correct a distortion existing in
the provided data, produced by a marginal portion of
outliers that widened the absolute value range of the
dataset, which is an advantage of this discretization
method (Grzenda 2020). This distortion occurred

particularly with the data of the floor area and building
footprint area. Table 4 shows how the ten factors were
discretized through percentiles. The categorical data
weights were assigned to their corresponding percentile
of the 1-to-100 scale, considering in it three equal seg-
ments (assuming intervals between weights as equal
units in a discrete scale). For the remaining continuous
data factors, the new values were simply the correspond-
ing percentile.

Logistic regression
Following the preparation of the data, the LOGIT pro-
ceeded. In regard to the sampling method, two sets of el-
ements (the binary sample of cells) with equal number
of items were then selected to test the LOGIT. The first
set had cells that registered the occurrence of landslides
(an average of 1.29 events per cell), in total, 1139 cells
with a true/one value. The second set had cells that did
not register landslides, i.e., false/zero value. Considering
the 1139 true values, an equal number of false value cells
were randomly chosen from more than 222,000
remaining equivalent value cells in the study area.
A generalized linear model regression function in the

programming platform (MATLAB_R2018b) was then
applied to obtain the values of the coefficients for all ten
factors and the intercept of the function. With these
values, the logistic regression (Eq. 1) was applied to ob-
tain the landslide susceptibility values for all cells for the
study area. These values provide the probability of oc-
currence of a landslide, varying from 0 (null probability)

Table 2 Input data for landslide susceptibility mapping in Quito

Code Content Disaggregation
level

Specifications, type Data Source Year

bin Landslide Events Point Binary COE-M Quito 2005–2017

1geo Lithology 50m Pre-discretized from categorical to weights
(weighted classes)

FUNEPSA et al. 2015 2015

2cov Land Use/Vegetation Cover 50m Pre-discretized from categorical to weights FUNEPSA et al. 2015 2015

3sei Seismicity 50m Pre-discretized from categorical to weights FUNEPSA et al. 2015 2015

4pre Intense Precipitations (in 24 h) 50 m Pre-discretized from continuous to weights FUNEPSA et al. 2015 2015

5sta Soil Stability (from former
landslides)

50 m Pre-discretized from categorical to weights FUNEPSA et al. 2015 2015

6slo Slope 50m Pre-discretized from continuous to weights FUNEPSA et al. 2015 2015

7pop Population Block Scale Continuous, discretized by natural breaks to
weights

INEC 2010

8roa Streets (Roads) Density Street segment Continuous, discretized by natural breaks to
weights

STHV – MDMQ 2016

9bui Floor Area Building Scale Continuous, discretized by natural breaks to
weights

STHV – MDMQ 2017

10gro Building Footprint Area Building Scale Continuous, discretized by natural breaks to
weights

STHV – MDMQ 2017

NOTE: COE-M is the Metropolitan Emergency Operations Committee of Quito, FUNEPSA et al., (2015) is the report containing the official surveyed data for Quito
Municipality - Disaster Risk Management Division, INEC is the Ecuadorian National Institute of Statistics and Census, STHV-MDMQ is the Secretariat of Territory,
Habitat and Housing of Quito Municipality
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to 1 (absolute occurrence). These values helped generate
the reference landslide susceptibility map. This process
was first undertaken for the six initial factors; second,
with the addition of population and floor area as new
factors; and finally, with the addition of road density and
building footprint area. The area under the receiving op-
erating characteristic (ROC) curve (AUC) was the per-
formance indicator chosen for the LOGIT model,
considering it is common in evaluation of the prediction
accuracy of models for natural hazards (Shahri et al.
2019; Wang et al. 2020).
Equation 1 Logistic regression function for landslide

susceptibility mapping

ls ¼ 1
1þ e− b0þb1x1þb2x2þ::…þbnxn:ð Þ

where:
ls = landslide susceptibility: the probability of occur-

rence of a landslide (between 0 and 1)
e = the mathematical constant e (2.71828)
b0 = the intercept of the logistic function
bn = the coefficient of factor xn
xn = the factor number n

Sensitivity Analysis – univariate method
After the generation of a referential susceptibility map
and the validation of the LOGIT model that generated it
using the AUC/ROC value, SA was performed to test
the sensitivity of the model outputs to changes in one,
many, or all selected parameters. For this research, the
selected referential metric was the AUC value as the
output for all of the generated simulations, as applied to
SA by Poelmans and Van Rompaey (2010). Sensitivity
analyses were performed using two methods.
The first was the simple, univariate, or OAT method,

which is simple to apply and assess. It consisted in chan-
ging one “free” parameter of the model at a time to gen-
erate variations of the model, within a defined range and
with a defined interval for the changes. In this case,
while one factor changes its coefficient, the others re-
main unaffected (fixed parameters) and remain as the

references. For the model used in this research, the pa-
rameters changed were each of the ten coefficients gen-
erated by the LOGIT model. A set of multipliers ranging
from 0.1 to 20 with an interval of 0.1 modified each of
the coefficients of the ten factors, one at a time, to gen-
erate a total of 2000 susceptibility maps, from which
AUC values (outputs) were generated and plotted. The
AUC values higher than the reference AUC value (the
first generated) indicates that their corresponding
models are better calibrated than the reference. This was
reproduced for the weights-encoded and the percentile-
discretized models.

Kolmogorov–Smirnov test for sensitivity
A two-sample Kolmogorov–Smirnov (K-S) test was ap-
plied to the univariate test results for both weights and
percentile-based discretization methods as another means
to determine the sensitivity of the factors. As a metric, the
D-statistic (also called the KS-statistic) values are pro-
vided, indicating the D-critical value, as calculated using
Eq. 2. These provide a more insightful picture than the p-
values of the same test, which considered an alpha value
of 0.05 and were also calculated. The K-S tests were tabu-
lated using the empirical distribution functions of two
samples—ones and zeros—from each resulting map de-
rived from the changes of the simple/univariate method,
i.e., the distribution of the cell values corresponding to
event occurrence cells (1139 observations/elements) com-
pared to a distribution of a randomly selected similar
number of non-occurrence cells. This test was applied
only to the results of the simple sensitivity analysis due to
limitations in computer processing capacities and simpli-
city of visualization in charts, which provided for better
communication of results.
Equation 2 Calculation of the D-critical value for a

two-sample K-S test

Dα ¼ c αð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1 þ n2
n1n2

r

where:

Table 4 Conversion table of categorical data from weights encoding to percentile discretization, and continuous data to percentiles

Categorical Data Factors: • Lithology
• Land Use/Vegetation Coverage
• Seismic intensities
• Intense Precipitations
• Soil Stability after former landslide events

Weights (Partial Susceptibilities) a: 1 2 3 4

Percentile Values: 1 33 67 100

Continuous Data Factors: • Slope
• Population
• Road Density
• Floor Area
• Building Footprint Area

Weights (Partial Susceptibilities) b: 1 2 3 4

Percentile Values: Corresponding percentile (from 1
to 100)

aAssigned according to FUNEPSA et al. (2015)
bClassified by natural breaks, except for slope, classified according to FUNEPSA et al. (2015)
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Dα = D-critical value of the K-S test at an alpha value
α
α = Alpha value determined for the K-S test (0.05 for

this case)
c(α) = constant based on α (1.36 for this case)
n1 = first sample size (1139 for this case)
n2 = second sample size (1139 for this case)

Sensitivity Analysis—Monte Carlo method
A second method to test the sensitivity based on factors
used random variations for all of the factors, from one
to all at a time, also within a defined range and with a
defined interval. This is also called the Monte Carlo or
stochastic method. For this research, multipliers of one
or more coefficients at a time ranged from 0.1 to 5 with
an interval of 0.1. The number of simulations for this
random selection of possibilities was set to 8000, which
may vary in replications of this study, according to the
computer’s processing capacities. Once again, AUC
values (outputs) were generated and those higher than
the reference AUC value indicated that their corre-
sponding models with their modified coefficients’ values
had a better performance calibration than the reference
itself (Bouyer 2009). To better illustrate this, a table of
random simulation calibrations is provided in the re-
sults, plus a chart showing the two best predictor
factors.

Methodology summary and software used
To summarize, Table 5 shows all of the methodology
and specific tools applied for this research.
Regarding the software packages used to process data

for this research work, GIS software (ArcMap 10.3) was
applied to produce all maps using the integration, trans-
formation, and geoprocessing tools, and conversion of
shapefiles into raster TIFF files to make them suitable
for calculation for the LOGIT model and the SA. A pro-
gramming platform for matrix analysis (MATLAB_
R2018b) was used for the SA, for which, particularly the

generalized linear model regression, (glmfit function)
and the AUC value computation (perfcurve function),
were applied. For the two-sample K-S test, the function
used was kstest2. The subsequent outputs were TIFF
files for mapping and CSV datasets to produce graphs
and charts in a spreadsheet package (Microsoft Excel)
and a presentation/illustration package (Micro-
soft PowerPoint). Tables were adjusted to a word pro-
cessing package (Microsoft Word) format. The input
TIFF files and the programming platform (MATLAB_
R2018b) code are provided as Supplementary Material
to this research work

Results
LOGIT results by adding urban factors and a
standardization variant
The first results portray the changes regarding the
addition of factors, departing from the six-factor initial
LOGIT model, which corresponds to the map shown in
Fig. 2, which delivered weight scores from eight (lowest
landslide susceptibility) to 21 (highest landslide suscepti-
bility). This considered six factors: lithology, land use/
vegetation coverage, seismic intensities, intense precipita-
tions, soil stability after large events, and slope. Subse-
quently, the LOGIT was tested with eight factors and
finally with 10 factors. The eight-factor model included
two more factors: population and floor area, while
retaining the weights encoding (continuous factors clas-
sified by natural breaks). The 10-factor model included
two more factors: road density and building footprint
area, also weights-encoded. As new factors were added,
the coefficients with the highest values changed their
relative descending order (from highest to lowest value).
For the 10-factor model, a variation by percentile-
discretization of factor values was applied, which deliv-
ered a fourth set of results. The four models’ results, in-
cluding their corresponding AUC value, can be seen in
Table 6. The initial multi-criteria evaluation (MCE) offi-
cial map and the 6, 8, and 10-factor reference maps

Table 5 Methodology summary and applied tools

6-Factor Model 8-Factor Model 10-Factor Model

Weights-encoding Weights-encoding Weights-encoding Percentile-discretization

LOGIT with referential landslide susceptibility
map and AUC value

✓ ✓ ✓ ✓

Resolution tests of 50, 100, 200 and 500m
cell size, through LOGIT and AUC value

✓

Sensitivity Analysis – Univariate method,
variations plot and AUC values higher
than reference

✓ ✓

K-S test ✓ ✓

Sensitivity Analysis – Monte Carlo Method,
visualization of 2 best predictors and AUC
values higher than reference

✓ ✓
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(weights and percentile standardizations), can be seen in
Fig. 3. The last two maps (d and e) in this figure were
used for SA.

Results based on resolution inputs
A previous approach in addition to testing SA based on
factors, was to consider the impact of the variation in the
input data cell size on the final result, using the AUC
value as a metric of validation. To test this sensitivity, the
minimum resolution (50m) provided by the sources as in-
put data was resampled to 100, 200, and 500m. The se-
lected standardization method for this test was the
weighed-encoding approach because it performed with a
higher AUC value than the percentile-discretized model
(see Table 6). To illustrate changes based on resolution in-
puts, Table 7 shows the descriptive statistics of AUC
values after simulating 100 LSM units for each of the cited
cell sizes. It can be noted that the highest average AUC
value corresponds to the 500m cell case. Nonetheless, the
model corresponding to this cell size is the least stable, as
indicated by its standard deviation and range, which are
higher than the cases of the other cell sizes. In contrast,
the original 50m cell size provided more stable behavior
while maintaining a reasonable and reliable AUC value be-
fore testing other parameters for SA.

Univariate SA results
With the ten-factor model, executed by both
standardization methods (weights and percentiles), an SA
based on factors was performed. For the weights-encoding
method, the univariate SA produced susceptibility maps

whose AUC values (the metric of the sensitivity) were plot-
ted, as seen in Fig. 4. From this analysis, and from the range
and interval set to produce the coefficient variations, there
were 241 AUC values higher than the reference AUC value
(0.7928) out of 2000 simulations. When observing this
chart, the AUC improvement is slightly higher than the ref-
erence. From the 2000 simulations, the highest AUC value
was 0.7943, which is almost 0.2% higher than the reference.
The coefficients that had the strongest impacts on the re-
sults, when the variations were applied, belong to the popu-
lation, slope, and road density factors.
The same test was applied to the percentile-discretized

case. The results delivered 34 AUC values higher than the
reference AUC value (0.7417) out of 2000 programmed
simulations. The maximum improvement reached an
AUC value of 0.7419 with a marginal improvement of
0.03%. The plotting of all AUC values derived from this
univariate method variations’ susceptibility maps/datasets
can be seen in Fig. 5. Precipitations, land-use cover, and
road density stand out as the most sensitive factors within
the defined range of variations. It must be noted that road
density is among the most sensitive factors for both
standardization methods, although it is not the most
sensitive in either of them.

K-S test results
As an alternative means to measure sensitivity, the K-S
test was applied to the same simulations undertaken for
the univariate SA, including range and interval varia-
tions. Regarding the K-S test applied to the weights-
encoding method, the p-value (at an alpha value of 0.05)
showed that 13 resulting landslide susceptibility map

Table 6 Output values from LOGIT modelling for landslide susceptibility in Quito

Code Factor 6-Factor Model 8-Factor Model 10-Factor Model

Weights encoding Weights encoding Weights encoding Percentile discretization

Coefficient
(β value)

Descending
Order

Coefficient
(β value)

Descending
Order

Coefficient
(β value)

Descending
Order

Coefficient
(β value)

Descending
Order

0int Intercept −0.5281 −10.7830 −4.1375 −2.4317

1geo Lithology 0.3756 3 0.2550 5 0.1905 5 0.0160 2

2cov Land use/vegetation coverage 0.8483 1 0.4250 4 0.0125 7 0.0122 3

3sei Seismic Intensity −0.1628 6 −0.0910 7 −0.2004 9 −0.0110 10

4pre Intense Precipitations 0.6528 2 0.4500 2 0.3943 3 0.0238 1

5sta Stability after large events 0.0247 5 0.1160 6 −0.1526 8 0.0047 5

6slo Slope 0.3756 4 0.4450 3 0.3896 4 −0.00045 7

7pop Population – – 0.6840 1 0.5348 2 0.0034 6

8roa Road Density – – – – 0.6101 1 0.0052 4

9bui Floor Area – – −0.1280 8 0.0566 6 −0.0040 9

10gro Building Footprint Area – – – – −0.2364 10 −0.0038 8

AUC value 0.755 0.784 0.7928 0.7417

NOTE: Descending Order columns refer to the relative order position that explanatory factor coefficients have among their group in the model by sorting them
from the highest to the lowest value
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Fig. 3 (See legend on next page.)
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samples, out of the 2000 simulated, were not significant.
These 13 cases corresponded to variations in the coeffi-
cients of three factors: road density, intense precipita-
tions, and population (see Fig. 6). For the percentile-
discretized case, with the same alpha value, number of
simulations, and range of variation, the resulting p-
values showed that the results of their samples were
non-significant only for two maps, with both samples
corresponding to the intense precipitations factor coeffi-
cient variations. These results are illustrated in Fig. 7.
As mentioned in the methodology, the presentation of

the values and charts of the D-statistic of the K-S test,
also called the KS statistic, is more insightful as a meas-
ure of sensitivity. To illustrate these values and its cor-
respondence with the p-values described above, the D-
critical value (Dα) was calculated, which for both
discretization methods was 0.057. The 13 non-
significant samples, according to their p-values from the
weights-discretization method cases, and the two non-
significant samples, according to the p-values from the
percentile-discretization method cases, can be identified
in Fig. 8, corresponding to variations in the coefficients
of the factors: road density, intense precipitations, and
population. The high sensitivity of these factors is not-
able within the studied range of variation. The same can
be appreciated in Fig. 9 for the percentile-discretized
method cases. In this figure, two simulations, which are
the non-significant samples, both corresponding to the
intense precipitations factor coefficient variation, present
D-statistic values below the critical Dα = 0.057. Similarly,
in addition to this factor, road density and building foot-
print can also be appreciated as highly sensitive in Fig. 9.

Monte Carlo SA results
The second SA method was the random/stochastic
method, also called Monte Carlo. The AUC value was,
as previously discussed, used as a metric to test the

sensitivity for both weights and percentiles
standardization methods. For each, 8000 simulations
were produced. A difference can be seen between the
weights and the percentile standardization methods’ re-
sults. The weights-encoding model generated 350 AUC
values (out of the 8000) that were higher than the refer-
ence of 0.7928, with the highest AUC = 0.7970, an im-
provement of 0.53% compared to the reference; whereas
the percentile-discretized model generated 4440 values
(out of the 8000) that were higher than the referential
0.7417, with a maximum AUC = 0.7968, an improvement
of 7.43% compared to the reference. For the percentile-
discretization case, a set of the highest 17, out of the
4440 possible combinations to change the reference co-
efficients, are presented in Table 8.
To provide a graphic example, the two factors with the

highest values of coefficients (see Table 6) were selected
to compare their AUC values with combinations from
the variations of both coefficients, while the other eight
coefficients maintained the reference values (ceteris pari-
bus). They are illustrated in bubble charts to support the
identification of the coordinates (combination) that per-
forms with the highest AUC value. For the weights-
encoding model these factors were population and road
density, and the random outputs selected 12 combina-
tions; however, none of these were higher than the refer-
ence (see Fig. 10). For the percentile-discretization
model, the factors were lithology and precipitations, and
the random outputs presented 18 combinations. In this
last case, all combinations achieved higher AUC values
than the reference (0.7417), as shown in Fig. 11

Discussion
Prior to discussion of the particular component results
and outcomes of this study, consideration should be
given to the broad set of possible combinations of meth-
odologies that a global LSM process, such as that pre-
sented, may adopt. Regardless of the modelling technique,
it is relevant to consider the manner in which the data is
generated and preprocessed as a parameter. In this regard,
van Dessel et al. (2011) stress the impact of the quality of
the input datasets on the resulting coefficients of logistic
regression models applied to landslide susceptibility ana-
lysis. In this regard, when reviewing the quality of the data
corresponding to soil stability and seismic intensities, it is
notable that the level of detail is poor. This might limit
the accuracy and performance of the models used in this
study. Currently, micro-zoning seismicity studies are being

(See figure on previous page.)
Fig. 3 Landslide susceptibility maps for Quito: (a) Multi-criteria evaluation (MCE) official map. From LOGIT modelling results: (b) Six-factor with
weights encoding (c) Eight-factor with weights encoding (d) Ten-factor with weights encoding (e) Ten-factor with percentile discretization.
Legend: All maps have been classified in 5 categories by the geometrical interval method in GIS (ArcMap 10.3). Other features: Study Area (black
line), Landslide Events during the 2005–2017 period (black dots), and five classes of susceptibility levels (blue-yellow-red color spectrum)

Table 7 Descriptive statistics of AUC values of LSM with LR for
Quito for 100 simulations for cell sizes of 50, 100, 200, and 500
m

Cell size (m) 50 100 200 500

Average AUC value 0.7909 0.7833 0.8012 0.8277

Maximum AUC value 0.7965 0.7892 0.8133 0.9155

Minimum AUC value 0.7740 0.7699 0.7795 0.6034

Standard deviation 0.0052 0.0057 0.0062 0.0578

Range in 100 simulations 0.0226 0.0194 0.0338 0.3121
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surveyed as part of a long-term project. In the future, this
could help obtain precise results in LSM studies, in
addition to better quality and newer data, which appears
to be a promising development for Quito.
This research implemented a pseudo-quantitative

method, which considered weights-encoded categorical
data and discretized continuous data as inputs, previously
assigned by official local experts. Data encoding is driven by

needs and expertise (Saltelli et al. 2019) of local DRM pro-
fessionals and scholars. In this experiment, local knowledge
was useful in gathering reliable data, regardless of potential
distortions in the results, which can be enhanced and com-
plemented by the statistical analysis of the empirical data it-
self (Grzenda 2020). In this regard, other studies have
encoded data based on the frequency ratio of events of a
specific class (Bui et al. 2020). For Quito, problems of

Fig. 4 Univariate sensitivity analysis for LOGIT model (weights-encoding) showing AUC values as a metric of the impact of coefficient variations
on the model performance. Legend: Lines represent factors: 1geo = lithology (electric blue), 2cov = land use/vegetation coverage (orange), 3sei =
seismicity (light gray), 4pre = precipitations (yellow), 5sta = soil stability (light blue), 6slo = slope (green), 7pop = population (dark blue), 8roa = road
density (brown), 9bui = floor area (dark gray) and, 10gro = building footprint area (ochre). X-axis shows the multipliers of each factor’s coefficient
and Y-axis shows the AUC/ROC values. The referential AUC value is shown in the dashed red line

Fig. 5 Univariate sensitivity analysis for LOGIT model (percentile discretization) showing AUC values as a metric of the impact of coefficient
variations on the model performance. Legend: Lines represent factors: 1geo = lithology (electric blue), 2cov = land use/vegetation coverage
(orange), 3sei = seismicity (light gray), 4pre = precipitations (yellow), 5sta = soil stability (light blue), 6slo = slope (green), 7pop = population (dark
blue), 8roa = road density (brown), 9bui = floor area (dark gray) and, 10gro = building footprint area (ochre). X-axis shows the multipliers of each
factor’s coefficient and Y-axis shows the AUC/ROC values. The referential AUC value is shown in the dashed red line
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unbalanced, unstructured, and underreported landslide
events data are expected to be overcome in the future, thus
improving weights encoding. Nevertheless, the encoded
data was processed using a theorical multicriteria assess-
ment for LSM, as undertaken in other research works
(Leoni et al. 2009; Lombardo and Mai 2018), which this
study tested with a LOGIT model and SA, as described
above.
For the current research, complementary data prepar-

ation was performed by scaling the factors’ values based on
both weight and percentile methods. In this regard, there
are differences that should not be overlooked when running
the LOGIT. For the first method (weights), the
discretization scaling to the additional four “urban” factors
enhanced the ROC/AUC value progressively, from 0.7550
to 0.7840, by adding population and floor area; and then to
0.7928 by adding road density and building footprint area.
Nonetheless, when discretizing all ten factors to a percentile
scale, the ROC/AUC value dropped to 0.7417, which is still
acceptable in terms of the classification power of the model,
but is not as reliable as the higher former value. Therefore,
the discretization from a 1-to-4 weights scale to percentiles
of the nominal factors did not provide accuracy. This may
be because, for the 1-to-4 discreet weights scale, the only
possible percentile values assigned were 1, 33, 67, and
100 (see Table 4), which affected the performance results of
the model. In contrast, a broader scale, such as that of the
percentiles, normally provides better parameterization

possibilities and, therefore, global performance, than the
cost-sensitive LOGIT model (Zhang et al. 2020).
In addition to using data provided by the municipality

of Quito, this research included more factors than the
official landslide susceptibility study. These factors were
population, road density, floor area, and building foot-
print area, which we consider helped to characterize the
urban category from the land use/vegetation coverage
factor of the former study. This can be seen by observing
the progressive change in the order of coefficients and
AUC values in Table 6.
In relation to the urban variables, it can be expected

that population, which appeared as an important pre-
dictor after the LOGIT application, may be related to
building footprint area and floor area. Nonetheless, the
latter factors were not found to be relevant predictors.
This might be related to the fact that the largest floor
area volumes are concentrated on the center-north of
the city, an area where self-built and informal construc-
tion is low, and buildings are often medium-rise with ap-
propriate construction techniques, soil management, and
artificial drainage. A further step of this study could in-
clude factors to assess LSM at building scales, using a
vulnerability and uncertainty quantification approach,
and considering the heterogeneity of urban fabrics, such
as those undertaken by Kaynia et al. (2008) and Du et al.
(2013). This research additionally may enhance the data
quality in surveying building conditions and soil

Fig. 6 This shows the p-values of the K-S test (two-sample) applied to 2000 landslide susceptibility datasets resulting from the univariate
susceptibility analysis of the LOGIT model by weights discretization. Legend: The alpha value to determine the significance level was 0.05, which
is marked with the dashed red line. The values (dots) above this level (precipitations, population, and road density) represent the non-significant
samples from 13 simulations, whereas the remaining 1987 are considered to be at significance levels. The building footprint factor dots (ochre
color) cover most of the dots representing these remaining simulations, which are very close to a p-value of zero. Lines with dots represent
factors: 1geo = lithology (electric blue), 2cov = land use/vegetation coverage (orange), 3sei = seismicity (light gray), 4pre = precipitations (yellow),
5sta = soil stability (light blue), 6slo = slope (green), 7pop = population (dark blue), 8roa = road density (brown), 9bui = floor area (dark gray) and,
10gro = building footprint area (ochre). X-axis shows the multipliers of each factor’s coefficient and Y-axis shows the p-values
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management, and data collection at a large urban scale,
as for the case of Quito.
Another complementary remark regarding the re-

sults in terms of policy implications is that the rele-
vance of the road density factor as a predictor does

not necessarily mean that streets and roads per se in-
crease LRisk. In fact, heterogeneity can have an im-
portant effect on the model (Wang et al. 2020).
Because roads are potential boosters of urban devel-
opment, it is necessary to examine in detail how

Fig. 7 This shows the p-values of the K-S test (two-sample) applied to 2000 landslide susceptibility datasets resulting from the univariate
susceptibility analysis of the LOGIT model by percentile discretization. Legend: The alpha value to determine the significance level was 0.05,
which is marked with the dashed red line. The values (dots) above this level (precipitations) represent the non-significant samples from two
simulations, whereas the remaining 1998 are considered to be at significance levels. The building footprint factor dots (ochre color) cover most of
the dots representing these remaining simulations, which are very close to a p-value of zero. Lines with dots represent factors: 1geo = lithology
(electric blue), 2cov = land use/vegetation coverage (orange), 3sei = seismicity (light gray), 4pre = precipitations (yellow), 5sta = soil stability (light
blue), 6slo = slope (green), 7pop = population (dark blue), 8roa = road density (brown), 9bui = floor area (dark gray) and, 10gro = building footprint
area (ochre). X-axis shows the multipliers of each factor’s coefficient and Y-axis shows the p-values

Fig. 8 This shows the D-statistic values of the two-sample K-S test for univariate sensitivity analysis of 2000 simulations, by weights discretization.
Legend: The critical value (Dα), related to an alpha value of 0.05, is marked with the dashed red line. The values below this level (precipitations,
population, and road density) represent the non-significant samples from 13 simulations, whereas the remaining 1987, represented above the
line, are considered to be at significance levels. Lines represent factors: 1geo = lithology (electric blue), 2cov = land use/vegetation coverage
(orange), 3sei = seismicity (light gray), 4pre = precipitations (yellow), 5sta = soil stability (light blue), 6slo = slope (green), 7pop = population (dark
blue), 8roa = road density (brown), 9bui = floor area (dark gray) and, 10gro = building footprint area (ochre). X-axis shows the multipliers of each
factor’s coefficient and Y-axis shows the D/KS values
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vulnerability is produced at the household scale, as
mentioned above.

Conclusions
This article presented the application of a binary logistic
regression model with the objective of producing a land-
slide susceptibility map for the urban area of Quito,
Ecuador. A landslide events database covering the 2005–
2017 period was used as the dependent binary factor.
Ten explanatory factors were tested: lithology, land use /
vegetation coverage, seismic intensities, intense precipita-
tions, soil stability based on previous events, slope, popu-
lation, road density, floor area, and building footprint
area. Adding the last four factors—considered “urban”—

was found to result in better performance of the model
(AUC = 0.7928) compared to the model operating only
with the first six factors (AUC = 0.7550).
Two data standardization methods were applied:

weights encoding and percentile discretization. After op-
erating the LOGIT model, the weighted-encoding
method delivered an AUC of 0.7928, whereas the
percentile-discretized model obtained 0.7417. Regarding
the resulting coefficients of the explanatory factors, the
weights-encoding method provided more stable values
than the percentile-discretized approach, whose per-
formance delivered greater oscillation in the coefficient
values, after several simulations. The instability in the
second method may be due to large differences in the

Fig. 10 AUC values resulting from random combinations of population and road density coefficients' variations of the reference outputs of the
weights-encoding LOGIT model. Legend: Blue bubble sizes represent the AUC values, whose area has been magnified according to the artifice
(AUC*10)^200. X-axis shows the multipliers of the population factor’s reference coefficients and Y-axis shows the multipliers of the road density
factor’s reference coefficients

Fig. 11 AUC values resulting from random combinations of lithology and precipitations coefficients' variations of the reference outputs from the
percentile-discretization LOGIT model. Legend: Green bubble sizes represent the AUC values, whose area has been magnified according to the
artifice (AUC*100)^100. X-axis show the multipliers of the lithology factor’s reference coefficients and Y-axis show the multipliers of the
precipitations factor’s reference coefficients
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Fig. 9 This shows the D-statistic values of the two-sample K-S test for univariate sensitivity analysis of 2000 simulations, by percentile
discretization. Legend: The critical value (Dα), related to an alpha value of 0.05, is marked with the dashed red line. The values below this level
(precipitations) represent the non-significant samples from two simulations, whereas the remaining 1998, represented above the line, are
considered to be at significance levels. Lines represent factors: 1geo = lithology (electric blue), 2cov = land use/vegetation coverage (orange), 3sei =
seismicity (light gray), 4pre = precipitations (yellow), 5sta = soil stability (light blue), 6slo = slope (green), 7pop = population (dark blue), 8roa = road
density (brown), 9bui = floor area (dark gray) and, 10gro = building footprint area (ochre). X-axis shows the multipliers of each factor’s coefficient
and Y-axis shows the D/KS values

Table 8 Randomly selected combination of multipliers of coefficients of the LOGIT model (percentile-discretized) to calibrate it for
optimal results in defining the landslide susceptibility map

AUC Lithology Land Use/Veg
Cover

Seismic
Intensity

Intense
Precipitations

Soil
Stability

Slope Population Road
Density

Floor
Area

Building
Footprint

0.74170b 0.01600a 0.01220a − 0.01100a 0.02380a 0.00470a − 0.00045a 0.00340a 0.00520a − 0.00400a − 0.00380a

0.79682 1 1 1 1.3 1 1 1 1 1 1

0.79682 1 1 1 1.3 1 1 1 1 1 1

0.79676 1 1 1 1.4 1 1 1 1 1 1

0.79676 1 1 1 1.4 1 1 1 1 1 1

0.79676 1 1 1 1.4 1 1 1 1 1 1

0.79671 1 1.5 1.4 1.3 1 1 1 1 1.9 1

0.79667 1 1 1 1.2 1 1 1 1 1 1

0.79667 1 1 1 1.2 1 1 1 1 1 1

0.79662 1 1 1 1.4 3.9 1 1 1 1 1

0.79655 1 1 1 1.5 3.1 1 1 1 0.3 1

0.79653 1 1 1 1.1 1 1 1 1 1 1

0.79653 1 1 1 1.1 1 1 1 1 1 1

0.79651 3.4 4.2 1.6 3.9 0.1 4.1 3.1 3.7 2.9 1.1

0.79651 1 1 1 1.1 1.8 1 1 1 1 1

0.79651 1 1 1 1.1 1.8 1 1 1 1 1

0.79646 0.9 1 1 1 1 1 1 1 1 1

0.79646 0.9 1 1 1 1 1 1 1 1 1
aThe reference coefficients for each factor provided from the initial LOGIT model application (percentile-discretization)
bThe reference AUC values provided after the initial LOGIT model application (percentile-discretization)
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percentiles’ classification, particularly for the categorical
data. According to the results of the weights-encoding
method, which was the most stable model, the factors of
road density, population, intense precipitations, and
slope, in that order, improved the prediction/classifica-
tion power. The percentiles-discretization method (least
stable model) showed that intense precipitations, lith-
ology, land use/vegetation coverage, and road density, in
that order, provided the best prediction improvement.
Concerns about the resolution were addressed by test-

ing changes of this parameter for cell sizes of 50 (the ori-
ginally generated input), 100, 200, and 500 m. Results
showed that, even when the highest values are achieved
with smaller resolutions, this behavior is not stable when
producing several simulations. In contrast, the 50 m cell
size model remains stable, whereas its performance ac-
cording to the AUC value (0.7928) demonstrates a high
classification power. Hence, this resolution was chosen
for the sensitivity analysis.
Univariate, Monte Carlo and K-S tests were applied to

measure the sensitivity of factors (both standardization
methods). AUC was used to measure the performance
for the first two tests and the K-statistic for the final test.
From the univariate SA results, it can be observed that
the slope, road density, intense precipitations, and popu-
lation factors curves resulted in the widest variations.
This was the case for the weights-encoded method (see
Fig. 4). In the case of the percentile-discretized method
(see Fig. 5), the most sensitive factor curves were those
of intense precipitations, land use/vegetation coverage,
lithology, and road density, within the studied simulation
range. Moreover, 241 out of 2000 simulations provided
better calibration of the weights-encoded model, with a
0.2% improvement of the AUC value; and 34 out of
2000 simulations provided better calibration of the
percentile-discretization model, but with only a marginal
0.03% improvement of the AUC value.
Regarding the Monte Carlo SA for the weights-

encoding model, 350 out of 8000 simulations showed
higher AUC values than the reference value, improving
on it by up to 0.53%. This differs substantially from the
weights-normalized model, which in the Monte Carlo
application only resulted in 4440 AUC values that were
higher than the reference, improving on it by up to 7.4%.
This means that the calibration of the percentile-
normalized model’s coefficients can still be adjusted to
improve predictability. Nonetheless, it does not achieve
significant better performance than the weights-
encoding model.
Finally, a two-sample K-S test was used to measure sen-

sitivity, using the D-statistic as a metric, and using the
same univariate SA simulations. In contrast to the univari-
ate and Monte Carlo SAs, the K-S test indicated that, for
the weights’ method, 13 simulations in the weights-

encoded cases were not significant in classification power
at alpha = 0.05, with the variations of road density, precipi-
tations, and population coefficients being sensitive beyond
the D-critical value. For the percentile-discretization cases,
only two simulations were not significant, with precipita-
tions as the sensitive factor, using the same alpha value.
This research aimed to contribute to the study of

LSM, not only with the inclusion of Quito as an Andean
city in an LRisk context, but also by observing LR mod-
elling behavior when incorporating novel “urban” fac-
tors, which is rarely found in the LSM literature. In this
regard, results highlight the importance of the street/
road network and population factors on the overall clas-
sification power of the model. In contrast, the building-
related factors (i.e., floor area and building footprint) do
not appear to have the same influence and their inverse
effect remains to be explored. Other factors, such as
slope and rainfall, appeared to be relatively relevant in
the LOGIT-LSM in this urban context, although the
quality of the local geology, for the most part, helps to
reduce the incidence of LRisk, according to local
experts.
It is expected that further research for the case of

Quito and similar Andean cities will benefit from the
generation of better quality and more detailed official
data, particularly regarding factors addressing the urban
form and physical and social vulnerability. Ultimately,
improved performance of LSM may support LRR policy
design, considering the diverse implications that accur-
ate delimitation of risk zones has for LRisk generation,
in addition to making land suitable for LRR, the con-
struction of safe housing, and urban development.
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